Quadratic data envelopment analysis

Data Envelopment Analysis (DEA) offers a piece-wise linear approximation of the production frontier. The approximation tends to be poor if the true frontier is not concave, eg in case of economies of scale or of specialisation. To improve the flexibility of the DEA frontier and to gain in empirical fit, we propose to extend DEA towards a more general piece-wise quadratic approximation, called Quadratic Data Envelopment Analysis (QDEA). We show that QDEA gives statistically consistent estimates for all production frontiers with bounded Hessian eigenvalues. Our Monte-Carlo simulations suggest that QDEA can substantially improve efficiency estimation in finite samples relative to standard DEA models.

[1]  N. Petersen Data Envelopment Analysis on a Relaxed Set of Assumptions , 1990 .

[2]  David W. Lewis,et al.  Matrix theory , 1991 .

[3]  Emmanuel Thanassoulis,et al.  Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions , 1997, Ann. Oper. Res..

[4]  R. Färe,et al.  Benefit and Distance Functions , 1996 .

[5]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[6]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[7]  Peter Bogetoft,et al.  DEA on relaxed convexity assumptions , 1996 .

[8]  Lawrence M. Seiford,et al.  Data envelopment analysis: The evolution of the state of the art (1978–1995) , 1996 .

[9]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[10]  Thierry Post,et al.  Transconcave data envelopment analysis , 2001, Eur. J. Oper. Res..

[11]  R. Banker,et al.  Piecewise Loglinear Estimation of Efficient Production Surfaces , 1986 .

[12]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[13]  R. Banker Maximum likelihood, consistency and data envelopment analysis: a statistical foundation , 1993 .

[14]  M. J. Farrell,et al.  The Convexity Assumption in the Theory of Competitive Markets , 1959, Journal of Political Economy.

[15]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[16]  W. Diewert,et al.  Flexible Functional Forms and Global Curvature Conditions , 1989 .

[17]  Jati K. Sengupta,et al.  Nonlinear measures of technical efficiency , 1989, Comput. Oper. Res..

[18]  Thierry Post,et al.  Estimating non-convex production sets - imposing convex input sets and output sets in data envelopment analysis , 2001, Eur. J. Oper. Res..

[19]  P. W. Wilson,et al.  Statistical Inference in Nonparametric Frontier Models: The State of the Art , 1999 .

[20]  D. Luenberger Benefit functions and duality , 1992 .

[21]  Timo Kuosmanen,et al.  DEA with efficiency classification preserving conditional convexity , 2001, Eur. J. Oper. Res..

[22]  J. Tind,et al.  Convex Input and Output Projections of Nonconvex Production Possibility Sets , 2000 .