‘Simple design-efficient calibration estimators for rejective and high-entropy sampling’

For survey calibration, consider the situation where the population totals of auxiliary variables are known or where auxiliary variables are measured for all population units. For each situation, we develop design-efficient calibration estimators under rejective or high-entropy sampling. A general approach is to extend efficient estimators for missing-data problems with independent and identically distributed data to the survey setting. We show that this approach effectively resolves two long-standing issues in existing approaches: how to achieve design efficiency regardless of a linear superpopulation model in generalized regression and calibration estimation, and how to find a simple approximation in optimal regression estimation. Moreover, the proposed approach sheds light on several issues that seem not to be well studied in the literature. Examples include use of the weighted Kullback--Leibler distance in calibration estimation, and efficient estimation allowing for misspecification of a nonlinear superpopulation model. Copyright 2013, Oxford University Press.

[1]  Zhiqiang Tan,et al.  Nonparametric likelihood and doubly robust estimating equations for marginal and nested structural models , 2010 .

[2]  J. N. K. Rao,et al.  Pseudo‐empirical likelihood ratio confidence intervals for complex surveys , 2006 .

[3]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[4]  Zhiqiang Tan Comment: Improved Local Efficiency and Double Robustness , 2008, The international journal of biostatistics.

[5]  Yves Tillé,et al.  Towards optimal regression estimation in sample surveys , 2003 .

[6]  K. Brewer A Class of Robust Sampling Designs for Large-Scale Surveys , 1979 .

[7]  Pamela A Shaw,et al.  Connections between Survey Calibration Estimators and Semiparametric Models for Incomplete Data , 2011, International statistical review = Revue internationale de statistique.

[8]  Jae Kwang Kim,et al.  Imputation using response probability , 2006 .

[9]  C. Särndal,et al.  Calibration Estimators in Survey Sampling , 1992 .

[10]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[11]  C. T. Isaki,et al.  SURVEY DESIGN UNDER SUPERPOPULATION MODELS , 1981 .

[12]  Carl-Erik Särndal,et al.  Generalized Raking Procedures in Survey Sampling , 1993 .

[13]  Y. Berger Variance estimation with Chao's sampling scheme , 2005 .

[14]  Changbao Wu,et al.  A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data , 2001 .

[15]  C. Cassel,et al.  Some results on generalized difference estimation and generalized regression estimation for finite populations , 1976 .

[16]  Efficient restricted estimators for conditional mean models with missing data , 2011 .

[17]  Phillip S. Kott Calibration Weighting: Combining Probability Samples and Linear Prediction Models , 2009 .

[18]  J. Hájek Asymptotic Theory of Rejective Sampling with Varying Probabilities from a Finite Population , 1964 .

[19]  J. Rao,et al.  A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS , 2013 .

[20]  Jae Kwang Kim Calibration estimation using empirical likelihood in survey sampling , 2009 .

[21]  M. Davidian,et al.  Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data , 2009, Biometrika.

[22]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[23]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[24]  Jun S. Liu,et al.  Weighted finite population sampling to maximize entropy , 1994 .

[25]  Per Gösta Andersson,et al.  An Optimal Calibration Distance Leading to the Optimal Regresion Estimator , 2005 .

[26]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[27]  Jiahua Chen,et al.  Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .

[28]  J. N. K. Rao,et al.  Developments in sample survey theory: An appraisal , 1997 .

[29]  W. Fuller Regression Estimation for Survey Samples , 2002 .

[30]  Wayne A. Fuller,et al.  Some design properties of a rejective sampling procedure , 2009 .

[31]  Zhiqiang Tan,et al.  Second-order asymptotic theory for calibration estimators in sampling and missing-data problems , 2014, J. Multivar. Anal..

[32]  Randy R. Sitter,et al.  A PSEUDO EMPIRICAL LIKELIHOOD APPROACH TO THE EFFECTIVE USE OF AUXILIARY INFORMATION IN COMPLEX SURVEYS , 1999 .

[33]  C. Särndal,et al.  Cosmetic form of estimators in survey sampling , 1984 .

[34]  A. U.S. Efficient restricted estimators for conditional mean models with missing data , .

[35]  J. Rao,et al.  Current topics in survey sampling , 1982 .

[36]  WU Bchangbao Optimal calibration estimators in survey sampling , 2003 .

[37]  Zhiqiang Tan,et al.  Comment: Understanding OR, PS and DR , 2007, 0804.2969.

[38]  Zhiqiang Tan,et al.  A Distributional Approach for Causal Inference Using Propensity Scores , 2006 .

[39]  Mark J van der Laan,et al.  Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis , 2008, The international journal of biostatistics.

[40]  Zhiqiang Tan,et al.  Bounded, efficient and doubly robust estimation with inverse weighting , 2010 .

[41]  Carl-Erik Särndal,et al.  Efficient Estimators with Simple Variance in Unequal Probability Sampling , 1996 .

[42]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[43]  Joseph Kang,et al.  Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data , 2007, 0804.2958.

[44]  J. Hájek,et al.  Sampling from a finite population , 1982 .

[45]  Roger L. Wright,et al.  Finite Population Sampling with Multivariate Auxiliary Information , 1983 .

[46]  G. Montanari Post-sampling efficient QR-prediction in large-sample surveys , 1987 .

[47]  Changbao Wu,et al.  Optimal calibration estimators in survey sampling , 2003 .

[48]  Yves G. Berger,et al.  Rate of convergence to normal distribution for the Horvitz-Thompson estimator , 1998 .

[49]  Yves G. Berger,et al.  Rate of convergence for asymptotic variance of the Horvitz–Thompson estimator , 1998 .