‘Simple design-efficient calibration estimators for rejective and high-entropy sampling’
暂无分享,去创建一个
[1] Zhiqiang Tan,et al. Nonparametric likelihood and doubly robust estimating equations for marginal and nested structural models , 2010 .
[2] J. N. K. Rao,et al. Pseudo‐empirical likelihood ratio confidence intervals for complex surveys , 2006 .
[3] Xiaotong Shen,et al. Empirical Likelihood , 2002 .
[4] Zhiqiang Tan. Comment: Improved Local Efficiency and Double Robustness , 2008, The international journal of biostatistics.
[5] Yves Tillé,et al. Towards optimal regression estimation in sample surveys , 2003 .
[6] K. Brewer. A Class of Robust Sampling Designs for Large-Scale Surveys , 1979 .
[7] Pamela A Shaw,et al. Connections between Survey Calibration Estimators and Semiparametric Models for Incomplete Data , 2011, International statistical review = Revue internationale de statistique.
[8] Jae Kwang Kim,et al. Imputation using response probability , 2006 .
[9] C. Särndal,et al. Calibration Estimators in Survey Sampling , 1992 .
[10] Carl-Erik Särndal,et al. Model Assisted Survey Sampling , 1997 .
[11] C. T. Isaki,et al. SURVEY DESIGN UNDER SUPERPOPULATION MODELS , 1981 .
[12] Carl-Erik Särndal,et al. Generalized Raking Procedures in Survey Sampling , 1993 .
[13] Y. Berger. Variance estimation with Chao's sampling scheme , 2005 .
[14] Changbao Wu,et al. A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data , 2001 .
[15] C. Cassel,et al. Some results on generalized difference estimation and generalized regression estimation for finite populations , 1976 .
[16] Efficient restricted estimators for conditional mean models with missing data , 2011 .
[17] Phillip S. Kott. Calibration Weighting: Combining Probability Samples and Linear Prediction Models , 2009 .
[18] J. Hájek. Asymptotic Theory of Rejective Sampling with Varying Probabilities from a Finite Population , 1964 .
[19] J. Rao,et al. A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS , 2013 .
[20] Jae Kwang Kim. Calibration estimation using empirical likelihood in survey sampling , 2009 .
[21] M. Davidian,et al. Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data , 2009, Biometrika.
[22] J. Robins,et al. Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .
[23] D. Rubin,et al. The central role of the propensity score in observational studies for causal effects , 1983 .
[24] Jun S. Liu,et al. Weighted finite population sampling to maximize entropy , 1994 .
[25] Per Gösta Andersson,et al. An Optimal Calibration Distance Leading to the Optimal Regresion Estimator , 2005 .
[26] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[27] Jiahua Chen,et al. Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .
[28] J. N. K. Rao,et al. Developments in sample survey theory: An appraisal , 1997 .
[29] W. Fuller. Regression Estimation for Survey Samples , 2002 .
[30] Wayne A. Fuller,et al. Some design properties of a rejective sampling procedure , 2009 .
[31] Zhiqiang Tan,et al. Second-order asymptotic theory for calibration estimators in sampling and missing-data problems , 2014, J. Multivar. Anal..
[32] Randy R. Sitter,et al. A PSEUDO EMPIRICAL LIKELIHOOD APPROACH TO THE EFFECTIVE USE OF AUXILIARY INFORMATION IN COMPLEX SURVEYS , 1999 .
[33] C. Särndal,et al. Cosmetic form of estimators in survey sampling , 1984 .
[34] A. U.S.. Efficient restricted estimators for conditional mean models with missing data , .
[35] J. Rao,et al. Current topics in survey sampling , 1982 .
[36] WU Bchangbao. Optimal calibration estimators in survey sampling , 2003 .
[37] Zhiqiang Tan,et al. Comment: Understanding OR, PS and DR , 2007, 0804.2969.
[38] Zhiqiang Tan,et al. A Distributional Approach for Causal Inference Using Propensity Scores , 2006 .
[39] Mark J van der Laan,et al. Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis , 2008, The international journal of biostatistics.
[40] Zhiqiang Tan,et al. Bounded, efficient and doubly robust estimation with inverse weighting , 2010 .
[41] Carl-Erik Särndal,et al. Efficient Estimators with Simple Variance in Unequal Probability Sampling , 1996 .
[42] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[43] Joseph Kang,et al. Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data , 2007, 0804.2958.
[44] J. Hájek,et al. Sampling from a finite population , 1982 .
[45] Roger L. Wright,et al. Finite Population Sampling with Multivariate Auxiliary Information , 1983 .
[46] G. Montanari. Post-sampling efficient QR-prediction in large-sample surveys , 1987 .
[47] Changbao Wu,et al. Optimal calibration estimators in survey sampling , 2003 .
[48] Yves G. Berger,et al. Rate of convergence to normal distribution for the Horvitz-Thompson estimator , 1998 .
[49] Yves G. Berger,et al. Rate of convergence for asymptotic variance of the Horvitz–Thompson estimator , 1998 .