DNA Computing Based Multi-objective Genetic Algorithm

In this chapter, DNA computing based non-dominated sorting genetic algorithm is described for solving the multi-objective optimization problems. First, the inconsistent multi-objective functions are converted into Pareto rank value and density information of solution distribution. Then, the archive is introduced to keep the Pareto front individuals by Pareto sorting, and the maintaining scheme is executed to maintain the evenness of individual distribution in terms of individual crowding measuring.

[1]  Gunar E. Liepins,et al.  Global convergence of genetic algorithms , 1992, Optics & Photonics.

[2]  Xiaoming Chen,et al.  Constraint multi-objective automated synthesis for CMOS operational amplifier , 2010, Neurocomputing.

[3]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[4]  Adnan Shaout,et al.  Many-Objective Software Remodularization Using NSGA-III , 2015, TSEM.

[5]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[6]  Jili Tao,et al.  DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes , 2007, Comput. Chem. Eng..

[7]  Chun-Liang Lin,et al.  Self‐organized PID control design using DNA computing approach , 2006 .

[8]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[9]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[10]  Yongsheng Ding,et al.  Emergence of self‐learning fuzzy systems by a new virus DNA–based evolutionary algorithm , 2003, Int. J. Intell. Syst..

[11]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[15]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[16]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[17]  Yang Yang,et al.  A distributed cooperative coevolutionary algorithm for multiobjective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[20]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[21]  Kay Chen Tan,et al.  A distributed Cooperative coevolutionary algorithm for multiobjective optimization , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).