Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission.

[1]  G Ulrich Nienhaus,et al.  Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  D. Bourgeois,et al.  Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima. , 2009, Journal of the American Chemical Society.

[3]  Michael Z. Lin,et al.  Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome , 2009, Science.

[4]  V. Adam,et al.  Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. , 2009, Biochemistry.

[5]  Alexander S. Mishin,et al.  Green fluorescent proteins are light-induced electron donors , 2009, Nature chemical biology.

[6]  R. Strack,et al.  Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling , 2009, BMC biotechnology.

[7]  Michael W. Davidson,et al.  Photoconversion in orange and red fluorescent proteins , 2009, Nature Methods.

[8]  Kristin L. Hazelwood,et al.  Far-red fluorescent tags for protein imaging in living tissues. , 2009, The Biochemical journal.

[9]  S. Remington,et al.  Structure and mechanism of the photoactivatable green fluorescent protein. , 2009, Journal of the American Chemical Society.

[10]  S. Hess,et al.  Imaging biological structures with fluorescence photoactivation localization microscopy , 2009, Nature Protocols.

[11]  G. Ulrich Nienhaus,et al.  mRuby, a Bright Monomeric Red Fluorescent Protein for Labeling of Subcellular Structures , 2009, PloS one.

[12]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[13]  Vladislav V Verkhusha,et al.  Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. , 2009, Nature chemical biology.

[14]  X. Shu,et al.  Unique interactions between the chromophore and glutamate 16 lead to far‐red emission in a red fluorescent protein , 2009, Protein science : a publication of the Protein Society.

[15]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[16]  Atsushi Miyawaki,et al.  mKikGR, a Monomeric Photoswitchable Fluorescent Protein , 2008, PloS one.

[17]  Jacco van Rheenen,et al.  Intravital imaging of metastatic behavior through a mammary imaging window , 2008, Nature Methods.

[18]  M. Field,et al.  Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations , 2008, Proceedings of the National Academy of Sciences.

[19]  Rita Strack,et al.  A noncytotoxic DsRed variant for whole-cell labeling , 2008, Nature Methods.

[20]  Zbigniew Dauter,et al.  A Crystallographic Study of Bright Far-Red Fluorescent Protein mKate Reveals pH-induced cis-trans Isomerization of the Chromophore* , 2008, Journal of Biological Chemistry.

[21]  Dmitriy M Chudakov,et al.  Conversion of red fluorescent protein into a bright blue probe. , 2008, Chemistry & biology.

[22]  Vladimir N Uversky,et al.  Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. , 2008, Current protein & peptide science.

[23]  Yasushi Okamura,et al.  Improving membrane voltage measurements using FRET with new fluorescent proteins , 2008, Nature Methods.

[24]  Atsushi Miyawaki,et al.  Fluorescence imaging using a fluorescent protein with a large Stokes shift. , 2008, Methods.

[25]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[26]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[27]  Joachim Goedhart,et al.  Sensitive Detection of p65 Homodimers Using Red-Shifted and Fluorescent Protein-Based FRET Couples , 2007, PloS one.

[28]  Atsushi Miyawaki,et al.  Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede. , 2007, Journal of molecular biology.

[29]  D. Shcherbo,et al.  Bright far-red fluorescent protein for whole-body imaging , 2007, Nature Methods.

[30]  S. Lukyanov,et al.  Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2 , 2007, Nature Protocols.

[31]  Joachim Goedhart,et al.  Bright monomeric red fluorescent protein with an extended fluorescence lifetime , 2007, Nature Methods.

[32]  P. Kulesa,et al.  An in vivo comparison of photoactivatable fluorescent proteins in an avian embryo model , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[33]  Nathan C Shaner,et al.  Novel chromophores and buried charges control color in mFruits. , 2006, Biochemistry.

[34]  Atsushi Miyawaki,et al.  A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy , 2006, Nature Biotechnology.

[35]  V. Verkhusha,et al.  Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light , 2006, Nature Biotechnology.

[36]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[37]  J. Wiedenmann,et al.  Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  X. Shu,et al.  Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. , 2005, Biochemistry.

[39]  Vladislav V Verkhusha,et al.  Conversion of the monomeric red fluorescent protein into a photoactivatable probe. , 2005, Chemistry & biology.

[40]  Atsushi Miyawaki,et al.  Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter , 2005, EMBO reports.

[41]  Konstantin A Lukyanov,et al.  zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. , 2005, Biochemistry.

[42]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Konstantin A Lukyanov,et al.  Photoswitchable cyan fluorescent protein for protein tracking , 2004, Nature Biotechnology.

[44]  Atsushi Miyawaki,et al.  Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. , 2003, Molecular cell.

[45]  K. König,et al.  Multiphoton microscopy in life sciences , 2000, Journal of microscopy.

[46]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[48]  D. Shcherbo,et al.  UvA-DARE ( Digital Academic Repository ) Practical and reliable FRET / FLIM pair of fluorescent proteins , 2009 .