Pseudospectra for matrix pencils and stability of equilibria

The concept of ε-pseudospectra for matrices, introduced by Trefethen and his coworkers, has been studied extensively since 1990. In this paper, ε-pseudospectra for matrix pencils, which are relevant in connection with generalized eigenvalue problems, are considered. Some properties as well as the practical computation of ε-pseudospectra for matrix pencils will be discussed. As an application, we demonstrate how this concept can be used for investigating the asymptotic stability of stationary solutions to time-dependent ordinary or partial differential equations; two cases, based on Burgers' equation, will be shown.

[1]  L. Fox COMPUTATIONAL METHODS IN PARTIAL DIFFERENTIAL EQUATIONS , 1971 .

[2]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[3]  N. Higham,et al.  Computing the field of values and pseudospectra using the Lanczos method with continuation , 1996 .

[4]  K. Meerbergen,et al.  The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .

[5]  Lloyd N. Trefethen,et al.  Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .

[6]  Gerard L. G. Sleijpen,et al.  Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..

[7]  M. N. Spijker,et al.  Linear stability analysis in the numerical solution of initial value problems , 1993, Acta Numerica.

[8]  Martin Brühl A curve tracing algorithm for computing the pseudospectrum , 1996 .

[9]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[10]  H. V. D. Vorst,et al.  Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .

[11]  L. Ahlfors Complex Analysis , 1979 .

[12]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[13]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[14]  A. Ploeg,et al.  An efficient code to compute non-parallel steady flows and their linear stability , 1995 .

[15]  A. R. Mitchell Computational methods in partial differential equations , 1969 .

[16]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[17]  Kim-Chuan Toh,et al.  Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..

[18]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[19]  Vincent Toumazou,et al.  Portraits spectraux de matrices : un outil d'analyse de la stabilité , 1996 .