On the Set of Points of Smoothness for the Value Function of Affine Optimal Control Problems

We study the regularity properties of the value function associated with an affine optimal control problem with quadratic cost plus a potential, for a fixed final time and initial point. Without assuming any condition on singular minimizers, we prove that the value function is continuous on an open and dense subset of the interior of the attainable set. As a byproduct we obtain that it is actually smooth on a possibly smaller set, still open and dense.

[1]  Andrei Agrachev,et al.  Optimal transportation under nonholonomic constraints , 2007, 0710.0408.

[2]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[3]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[4]  F. Clarke,et al.  The value function in optimal control , 1985, 1985 24th IEEE Conference on Decision and Control.

[5]  Ludovic Rifford,et al.  Semiconcavity results for optimal control problems admitting no singular minimizing controls , 2008 .

[6]  V. Jurdjevic Geometric control theory , 1996 .

[7]  Ludovic Riord Sub-Riemannian Geometry and Optimal Transport , 2013 .

[8]  S. Sternberg Lectures on Differential Geometry , 1964 .

[9]  Dario Prandi,et al.  Hölder equivalence of the value function for control-affine systems , 2013, 1304.6649.

[10]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[11]  Emmanuel Trélat,et al.  Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost , 2000, math/0607424.

[12]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[13]  Andrei Agrachev,et al.  Any sub-Riemannian metric has points of smoothness , 2008, 0808.4059.

[14]  Andrei A. Agrachev,et al.  Introduction to Riemannian and Sub-Riemannian geometry , 2012 .

[15]  Nicole Fruehauf Semiconcave Functions Hamilton Jacobi Equations And Optimal Control , 2016 .

[16]  Emmanuel Trélat,et al.  Singular Trajectories of Control-Affine Systems , 2006, SIAM J. Control. Optim..

[17]  Emmanuel Trélat,et al.  Morse-Sard type results in sub-Riemannian geometry , 2005 .