On the Set of Points of Smoothness for the Value Function of Affine Optimal Control Problems
暂无分享,去创建一个
[1] Andrei Agrachev,et al. Optimal transportation under nonholonomic constraints , 2007, 0710.0408.
[2] E. Blum,et al. The Mathematical Theory of Optimal Processes. , 1963 .
[3] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[4] F. Clarke,et al. The value function in optimal control , 1985, 1985 24th IEEE Conference on Decision and Control.
[5] Ludovic Rifford,et al. Semiconcavity results for optimal control problems admitting no singular minimizing controls , 2008 .
[6] V. Jurdjevic. Geometric control theory , 1996 .
[7] Ludovic Riord. Sub-Riemannian Geometry and Optimal Transport , 2013 .
[8] S. Sternberg. Lectures on Differential Geometry , 1964 .
[9] Dario Prandi,et al. Hölder equivalence of the value function for control-affine systems , 2013, 1304.6649.
[10] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[11] Emmanuel Trélat,et al. Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost , 2000, math/0607424.
[12] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[13] Andrei Agrachev,et al. Any sub-Riemannian metric has points of smoothness , 2008, 0808.4059.
[14] Andrei A. Agrachev,et al. Introduction to Riemannian and Sub-Riemannian geometry , 2012 .
[15] Nicole Fruehauf. Semiconcave Functions Hamilton Jacobi Equations And Optimal Control , 2016 .
[16] Emmanuel Trélat,et al. Singular Trajectories of Control-Affine Systems , 2006, SIAM J. Control. Optim..
[17] Emmanuel Trélat,et al. Morse-Sard type results in sub-Riemannian geometry , 2005 .