Ionically-mediated electromechanical hysteresis in transition metal oxides.

Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO(2) and SrTiO(3) thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

[1]  Sergei V. Kalinin,et al.  Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements , 2004 .

[2]  E. A. Eliseev,et al.  Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3films , 2011 .

[3]  James A. Bain,et al.  Computational investigations into the operating window for memristive devices based on homogeneous ionic motion , 2011 .

[4]  Yoshio Nishi,et al.  Electronic correlation effects in reduced rutile TiO 2 within the LDA+U method , 2010 .

[5]  A. Grunebohm,et al.  First-principles study of the influence of (110)-oriented strain on the ferroelectric properties of rutile TiO2 , 2011, 1106.2820.

[6]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[7]  The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function , 2007, 0705.3449.

[8]  Venkatraman Gopalan,et al.  Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors , 2011, 1103.2745.

[9]  Sergei V. Kalinin,et al.  Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. , 2012, Nano letters.

[10]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[11]  M. Alexe,et al.  Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films. , 2011, ACS nano.

[12]  J. M. Worlock,et al.  Electric-Field-Induced Raman Scattering in SrTi O 3 and KTa O 3 , 1968 .

[13]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[14]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[15]  Sergei V. Kalinin,et al.  Probing surface and bulk electrochemical processes on the LaAlO3-SrTiO3 interface. , 2012, ACS nano.

[16]  D. Muller,et al.  A Ferroelectric Oxide Made Directly on Silicon , 2009, Science.

[17]  Amit Kumar,et al.  Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy , 2011 .

[18]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[19]  Sergei V. Kalinin,et al.  Piezoresponse force spectroscopy of ferroelectric-semiconductor materials , 2006, cond-mat/0610764.

[20]  G. Samara,et al.  Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2(Rutile) , 1973 .

[21]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[22]  Seungbum Hong,et al.  Ambient effects on electric-field-induced local charge modification of TiO2 , 2012 .

[23]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[24]  Sergei V. Kalinin,et al.  Local polarization dynamics in ferroelectric materials , 2010 .

[25]  A. Kholkin,et al.  Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics , 2011 .

[26]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[27]  Observation of room-temperature ferroelectricity in tetragonal strontium titanate thin films on SrTiO3 (001) substrates , 2007, 0705.2805.

[28]  R. Bell,et al.  Dielectric Constant in Paraelectric Perovskites , 1964 .

[29]  M. Tyunina,et al.  Relaxation of induced polar state in relaxor PbMg1∕3Nb2∕3O3 thin films studied by piezoresponse force microscopy , 2005 .

[30]  Changdeuck Bae,et al.  Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy , 2009 .

[31]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[32]  A. Tagantsev,et al.  Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling , 2009 .

[33]  V. Shvartsman,et al.  Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy , 2004 .

[34]  M. Itoh,et al.  Pressure as a probe of the physics of 18 O -substituted SrTiO 3 , 2004 .

[35]  A. Kholkin,et al.  Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics , 2011 .

[36]  Sergei V. Kalinin,et al.  Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates , 2006 .

[37]  H. Fuchs,et al.  Fast interfacial ionic conduction in nanostructured glass ceramics. , 2007, Physical review letters.

[38]  Cross,et al.  Glassy polarization behavior of relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[39]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[40]  Y. Ikuhara,et al.  First-principles study on structures and energetics of intrinsic vacancies in SrTiO 3 , 2003 .

[41]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[42]  T. Fister,et al.  Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO₃. , 2010, Physical review letters.

[43]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces , 2002 .

[44]  J. Greedan,et al.  Oxygen-deficient SrTiO3−x, x = 0.28, 0.17, and 0.08. Crystal growth, crystal structure, magnetic, and transport properties , 1991 .

[45]  S. Kalinin,et al.  Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect , 2011 .

[46]  Electromechanical detection in scanning probe microscopy: Tip models and materials contrast , 2006, cond-mat/0607543.

[47]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[48]  Peter Maksymovych,et al.  Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics , 2008 .

[49]  L. Eric Cross,et al.  Ferroelectric Ceramics: Tailoring Properties for Specific Applications , 1993 .

[50]  Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device , 2005, cond-mat/0506621.

[51]  T. Fister,et al.  Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. , 2011, Physical review letters.

[52]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[53]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[54]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[55]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[56]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[57]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[58]  A. Kholkin,et al.  Locally induced charged states in La0.89Sr0.11MnO3 single crystals , 2009 .