Mid-infrared plasmonic gas sensor

The Mid Infrared MIR wavelength range offers many advantages in different applications. Chemical and biological detection are one of these applications, as it contains the absorption fingerprints of many gases and molecules. In addition integrated plasmonics are suitable platform for high sensitivity on chip sensors. In this paper we propose plasmonic Mach-Zehnder Interferometer (MZI) working as a gas sensor near the absorption fingerprints of many gases in the mid-infrared region. The proposed MZI contains a vertically stacked metal-insulator-metal (MIM) and metalinsulator (MI) waveguide. The sensitivity of MI waveguide is lower at higher wavelengths and also lower for gaseous medium than for liquid medium. In addition the losses of the MIM waveguide with oxide layer as insulator are much larger than the losses of the MI waveguide with gas as insulator which will result in poor visibility interferometers. Using a high index layer above the metal of the MI waveguide the sensitivity of the waveguide to gaseous in the mid infrared has been significantly enhanced. This layer also balances the intrinsic losses of both MI and MIM waveguides. The thickness and the refractive index of this layer have been optimized using finite difference modal analysis. Using this layer high sensitivity and high figure of merit (FOM) have been achieved for our MZI. This structure offers simple fabrication and low cost sensor that is suitable for rapid, portable and high throughput optical detection using multiplexed array sensing technique.

[1]  Mohamed A. Swillam,et al.  Efficient sensitivity analysis approach based on finite element solutions of photonic structures , 2014 .

[2]  Ye-Xiong Huang,et al.  A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity , 2015, IEEE Photonics Journal.

[3]  Diaa Khalil,et al.  On-Chip Micro–Electro–Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing , 2016, Applied spectroscopy.

[4]  Mohamed A. Swillam,et al.  Optimal design of intermediate reflector layer in micromorph silicon thin-film solar cells , 2016 .

[5]  S. S. A. Obayya,et al.  Surface plasmon photonic crystal fiber biosensor for glucose monitoring , 2017, 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES).

[6]  Mohamed A. Swillam,et al.  Nonlinear tuning techniques of plasmonic nano-filters , 2015 .

[7]  Mohamed A. Swillam,et al.  Hybrid silicon plasmonic organic directional coupler-based modulator , 2016 .

[8]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[9]  Mohamed A. Swillam,et al.  Broadband absorption enhancement in organic solar cells using refractory plasmonic ceramics , 2017 .

[10]  Mohamed A. Swillam,et al.  Spatial beam splitting for fully integrated MEMSinterferometer , 2013 .

[11]  Mohamed A. Swillam,et al.  Silicon-Based SERS Substrates Fabricated by Electroless Etching , 2017, Journal of Lightwave Technology.

[12]  Dimitrios C. Zografopoulos,et al.  Hybrid Plasmonic Modulators and Filters Based on Electromagnetically Induced Transparency , 2016, IEEE Photonics Technology Letters.

[13]  Mohamed A. Swillam,et al.  Semi-analytical design methodology for large scale metal–insulator–metal waveguide networks , 2014 .

[14]  Weidong Chen,et al.  Detection of Carbon Dioxide in Air Using Difference-Frequency Generation Based Infrared Spectrometer , 1998 .

[15]  Mohamed A. Swillam,et al.  Long-range all-dielectric plasmonic waveguide in mid-infrared , 2016 .

[16]  Osman S Ahmed,et al.  Realizing vertical light coupling and splitting in nano-plasmonic multilevel circuits. , 2013, Optics express.

[17]  Mohamed A. Swillam,et al.  Investigating several ZrN plasmonic nanostructures and their effect on the absorption of organic solar cells , 2017 .

[18]  Mohamed A. Swillam,et al.  Hybrid plasmonic electro-optical modulator , 2016 .

[19]  Mohamed A Swillam,et al.  Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers. , 2010, Optics express.

[20]  Mohamed A. Swillam,et al.  Optical biosensor based on a silicon nanowire ridge waveguide for lab on chip applications , 2015 .

[21]  Y. Ismail,et al.  Lithography-free wide-angle antireflective self-cleaning silicon nanocones. , 2016, Optics letters.

[22]  Mohamed A. Swillam,et al.  Broadband Compact Silicon Wire to Silicon Slot Waveguide Orthogonal Bend , 2014, Journal of Lightwave Technology.

[23]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[24]  Filbert J. Bartoli,et al.  A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing , 2013 .

[25]  Mohamed A. Swillam,et al.  Optical trapping and manipulation of nanoparticles using a meta plasmonic structure , 2015 .

[26]  M. A. Swillam,et al.  Feedback Effects in Plasmonic Slot Waveguides Examined Using a Closed Form Model , 2012, IEEE Photonics Technology Letters.

[27]  Mohamed A. Swillam,et al.  Plasmonic slot waveguides with core nonlinearity , 2013, OPTO.

[28]  Mohamed A. Swillam,et al.  High performance optical systems using MIM based plasmonic structures , 2017 .

[29]  Mohamed A. Swillam,et al.  Spatial beam splitting for fully integrated MEMS interferometer , 2013, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[30]  Mohamed A. Swillam,et al.  Resonance-based integrated plasmonic nanosensor for lab-on-chip applications , 2013 .

[31]  Mohamed A. Swillam,et al.  Submicron 1xN Ultra Wideband MIM Plasmonic Power Splitters , 2014, Journal of Lightwave Technology.

[32]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[33]  Yang Liu,et al.  Silicon waveguides and ring resonators at 5.5 µm , 2010 .

[34]  Mohamed A. Swillam,et al.  Silicon-on-sapphire (SOS) waveguide modal analysis for mid-infrared applications , 2017 .

[35]  Mohamed A. Swillam,et al.  Plasmonic silicon solar cells using titanium nitride: a comparative study , 2014 .

[36]  Mohamed A. Swillam,et al.  Silicon Waveguides at the Mid-Infrared , 2015, Journal of Lightwave Technology.

[37]  Mohamed A. Swillam,et al.  Hybrid electro-optic plasmonic modulators based on directional coupler switches , 2016 .

[38]  Mohamed A. Swillam,et al.  Errata: Resonance-based integrated plasmonic nanosensor for lab-on-chip applications , 2014 .

[39]  Mohamed A. Swillam,et al.  Efficient broadband energy transfer via momentum matching at hybrid junctions of guided-waves , 2012 .

[40]  Faqiang Wang,et al.  A Nanoscale Refractive Index Sensor Based on Asymmetric Plasmonic Waveguide With a Ring Resonator: A Review , 2015, IEEE Sensors Journal.

[41]  Mohamed A. Swillam,et al.  Electro-Optic Plasmonic Modulator With Direct Coupling to Silicon Waveguides , 2017, IEEE Photonics Journal.

[42]  Mohamed A. Swillam,et al.  Modelling of quantum confinement in optical nanostructures , 2015 .

[43]  Mohamed A. Swillam,et al.  Linearized finite-element method solution of the ion-exchange nonlinear diffusion model , 2017 .

[44]  Teri W Odom,et al.  Refractive index sensing using quasi one-dimensional nanoslit arrays. , 2009, Nano letters.

[45]  Mohamed A. Swillam,et al.  Metal-less silicon plasmonic mid-infrared gas sensor , 2016 .

[46]  M. Lipson,et al.  On-chip gas detection in silicon optical microcavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[47]  R. Loo,et al.  Germanium-on-Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers , 2013, IEEE Photonics Technology Letters.

[48]  D. Savastru,et al.  ANALYTICAL CONSIDERATIONS AND NUMERICAL SIMULATIONS FOR SURFACE PLASMON RESONANCE IN FOUR LAYERS PLASMONIC STRUCTURES WHICH CONTAIN HIGH REFRACTIVE INDEX WAVEGUIDE , 2015 .

[49]  M. Nedeljkovic,et al.  Mid-infrared photonics devices in SOI , 2013, Photonics West - Optoelectronic Materials and Devices.

[50]  Mohamed A. Swillam,et al.  Silicon plasmonics at midinfrared using silicon-insulator-silicon platform , 2017 .

[51]  Xun Li,et al.  Efficient Design of Integrated Wideband Polarization Splitter/Combiner , 2010, Journal of Lightwave Technology.

[52]  Mohamed A. Swillam,et al.  NEMS-based MIM plasmonics tunable filter , 2016, SPIE OPTO.

[53]  Mohamed A. Swillam,et al.  Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights , 2014 .

[54]  Mohamed H. El Sherif,et al.  Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire. , 2012, Optics express.

[55]  Mohamed A. Swillam,et al.  Mid-Infrared Plasmonic Power Splitters , 2016, IEEE Photonics Technology Letters.

[56]  Laura M Lechuga,et al.  Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. , 2010, ACS nano.

[57]  Mohamed A. Swillam,et al.  Silicon-plasmonic-integrated mid-infrared sensor using CMOS technology , 2017, OPTO.

[58]  D. Khalil,et al.  Performance evaluation of a metal-insulator-metal surface plasmon resonance optical gas sensor under the effect of Gaussian beams. , 2014, Applied optics.

[59]  Mohamed A. Swillam,et al.  Submicron omega-shaped plasmonic polarization rotator , 2014 .

[60]  Xun Li,et al.  Filter Design Using Multiple Coupled Microcavities , 2011, IEEE Photonics Technology Letters.

[61]  Milan M. Milosevic,et al.  Silicon waveguides and devices for the mid-infrared , 2012 .

[62]  Tina J. Cotler,et al.  Infrared absorption spectroscopy for monitoring condensible gases in chemical vapor deposition applications , 1994 .

[63]  Milos Nedeljkovic Silicon photonic modulators for the mid-infrared , 2013 .

[64]  Mohamed A. Swillam,et al.  Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach , 2013 .

[65]  Pao Tai Lin,et al.  Planar silicon nitride mid-infrared devices , 2013 .

[66]  Mohamed A. Swillam,et al.  Analysis of plasmonic effects in silicon nanoholes , 2014 .

[67]  Ke Xu,et al.  Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[68]  Mohamed A. Swillam,et al.  Low power hybrid plasmonic microring-on-disks electro-optical modulators , 2017 .

[69]  Mohamed A. Swillam,et al.  Analytical model for metal-insulator-metal mesh waveguide architectures , 2012 .

[70]  S S Saini,et al.  Silicon nanowire arrays with enhanced optical properties. , 2012, Optics letters.

[71]  Mohamed A Swillam,et al.  Analysis and applications of 3D rectangular metallic waveguides. , 2010, Optics express.

[72]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[73]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[74]  Mohamed A. Swillam,et al.  Tunable Nanoplasmonics , 2013 .

[75]  Mohamed A. Swillam,et al.  Dispersion analysis and engineering of 2D plasmonic waveguides , 2014 .

[76]  Mohamed A. Swillam,et al.  Super-focusing of visible and UV light using a meta surface , 2014 .

[77]  Mohamed A. Swillam,et al.  Toward automated parasitic extraction of silicon photonics using layout physical verifications , 2016 .

[78]  Mohamed A. Swillam,et al.  Efficient fabrication methodology of wide angle black silicon for energy harvesting applications , 2017 .

[79]  M. A. Swillam,et al.  Efficient Design Optimization of Ring Resonator-Based Optical Filters , 2011, Journal of Lightwave Technology.

[80]  Mohamed A. Swillam,et al.  Semiconductor plasmonic gas sensor using on-chip infrared spectroscopy , 2017 .

[81]  K. Sharaf,et al.  Environmental mid-infrared gas sensing using MEMS FTIR spectrometer , 2017, OPTO.

[82]  Stephen W. McHugh,et al.  Review of thermal imaging system performance , 1992, Defense, Security, and Sensing.

[83]  Mohamed A. Swillam,et al.  Integrated optical sensor using hybrid plasmonics for lab on chip applications , 2016 .

[84]  Qiaoqiang Gan,et al.  Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing. , 2011, ACS nano.

[85]  Mohamed A. Swillam,et al.  Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial , 2017, Scientific Reports.

[86]  Mohamed A. Swillam,et al.  Nanoelectromechanical systems-based metal-insulator-metal plasmonics tunable filter , 2015 .

[87]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[88]  Mohamed A Swillam,et al.  All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film. , 2011, Optics express.

[89]  Mohamed A. Swillam,et al.  Electro-optic modulators based on hybrid plasmonic micro-ring-disk resonators with femtojoule switching energy , 2016 .

[90]  Lucas Labadie,et al.  Mid-infrared guided optics: a perspective for astronomical instruments. , 2009, Optics express.

[91]  Mohamed A. Swillam,et al.  Integrated plasmonic refractometric sensor using Fano resonance , 2017 .

[92]  Mohamed A Swillam,et al.  Artificial neural network modeling of plasmonic transmission lines. , 2016, Applied optics.

[93]  Mohamed A. Swillam,et al.  Nanoscale highly selective plasmonic quad wavelength demultiplexer based on a metal-insulator-metal , 2015 .