Human melanocyte development and melanoma dedifferentiation at single cell resolution

[1]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[2]  Hannah A. Pliner,et al.  A human cell atlas of fetal gene expression , 2020, Science.

[3]  J. Mallm,et al.  Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming , 2020, Communications Biology.

[4]  K. Plath,et al.  Defining transcriptional signatures of human hair follicle cell states. , 2020, The Journal of investigative dermatology.

[5]  Cole Trapnell,et al.  Single-Cell Transcriptomic Comparison of Human Fetal Retina, hPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures , 2020, Cell reports.

[6]  P. Meltzer,et al.  Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis , 2020, Nature Communications.

[7]  M. Mildner,et al.  Deciphering the functional heterogeneity of skin fibroblasts using single‐cell RNA sequencing , 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  P. Carmeliet,et al.  PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase , 2020, Nature Communications.

[9]  Bin Zhou,et al.  Hair follicle stem cells regulate retinoid metabolism to maintain the self-renewal niche for melanocyte stem cells , 2020, eLife.

[10]  A. Jemal,et al.  Cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.

[11]  S. Simon,et al.  Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling , 2019, The Journal of cell biology.

[12]  Yanxin Li,et al.  Neural progenitor cells mediated by H2A.Z.2 regulate microglial development via Cxcl14 in the embryonic brain , 2019, Proceedings of the National Academy of Sciences.

[13]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[14]  R. Bakos,et al.  Tropomyosin-Related Kinase Receptor and Neurotrophin Expression in Cutaneous Melanoma Is Associated with a Poor Prognosis and Decreased Survival , 2019, Oncology.

[15]  Ka-Wai Mok,et al.  An updated classification of hair follicle morphogenesis , 2019, Experimental dermatology.

[16]  T. Hornyak,et al.  CD34 defines melanocyte stem cell subpopulations with distinct regenerative properties , 2019, PLoS genetics.

[17]  D. Adams,et al.  Melanoma subtypes: genomic profiles, prognostic molecular markers and therapeutic possibilities , 2019, The Journal of pathology.

[18]  John D. Blischak,et al.  Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis , 2019, bioRxiv.

[19]  D. Balding,et al.  A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia , 2019, Nature Communications.

[20]  D. Watkins-Chow,et al.  A curated gene list for expanding the horizons of pigmentation biology , 2018, Pigment cell & melanoma research.

[21]  Monika S. Kowalczyk,et al.  A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade , 2018, Cell.

[22]  K. Nehal,et al.  PRAME Expression in Melanocytic Tumors , 2018, American Journal of Surgical Pathology.

[23]  Charles J. Vaske,et al.  Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution , 2018, Cell reports.

[24]  K. Flaherty,et al.  Toward Minimal Residual Disease-Directed Therapy in Melanoma , 2018, Cell.

[25]  F. Tang,et al.  Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing , 2018, Nature Cell Biology.

[26]  T. Graeber,et al.  Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. , 2018, Cancer cell.

[27]  Adrian V. Lee,et al.  An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics , 2018, Cell.

[28]  Joshua M. Stuart,et al.  Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. , 2018, Cell.

[29]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[30]  D. Damotte,et al.  The Human Penis Is a Genuine Immunological Effector Site , 2017, Front. Immunol..

[31]  Derek E. Kelly,et al.  Loci associated with skin pigmentation identified in African populations , 2017, Science.

[32]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[33]  Wiktor Paskal,et al.  Intratumor and Intertumor Heterogeneity in Melanoma , 2017, Translational oncology.

[34]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[35]  Christine S. M. Lau,et al.  Malignant Melanoma in African–Americans , 2017, Medicine.

[36]  Rebecca F. Halperin,et al.  Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. , 2017, Genome research.

[37]  Marie Perier-Muzet,et al.  ZEB1‐mediated melanoma cell plasticity enhances resistance to MAPK inhibitors , 2016, EMBO molecular medicine.

[38]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[39]  R. Yi,et al.  Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles. , 2016, Cell reports.

[40]  Avi Ma’ayan,et al.  An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin. , 2015, Developmental cell.

[41]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[42]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[43]  M. Fukunaga‐kalabis,et al.  Site-specific migration of human fetal melanocytes in volar skin. , 2015, Journal of dermatological science.

[44]  Johan Staaf,et al.  Molecular stratification of metastatic melanoma using gene expression profiling : Prediction of survival outcome and benefit from molecular targeted therapy , 2015, Oncotarget.

[45]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[46]  A. Weeraratna,et al.  Wnt5A promotes an adaptive, senescent‐like stress response, while continuing to drive invasion in melanoma cells , 2015, Pigment cell & melanoma research.

[47]  Richard L. Mort,et al.  The melanocyte lineage in development and disease , 2015, Development.

[48]  H. Nakauchi,et al.  A melanocyte–melanoma precursor niche in sweat glands of volar skin , 2014, Pigment cell & melanoma research.

[49]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[50]  G. Berx,et al.  Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression , 2014, Cell Death and Differentiation.

[51]  C. Simbulan-Rosenthal,et al.  Id2, Id3 and Id4 overcome a Smad7-mediated block in tumorigenesis, generating TGF-β-independent melanoma. , 2014, Carcinogenesis.

[52]  S. Gruber,et al.  Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. , 2013, The Journal of investigative dermatology.

[53]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[54]  P. Labosky,et al.  Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 , 2013, Proceedings of the National Academy of Sciences.

[55]  M. Tomishima,et al.  Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. , 2013, Cell reports.

[56]  J. Landsberg,et al.  Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation , 2012, Nature.

[57]  R. Dummer,et al.  Systematic classification of melanoma cells by phenotype‐specific gene expression mapping , 2012, Pigment cell & melanoma research.

[58]  J. Ge,et al.  Transcription Factor TCF4 Maintains the Properties of Human Corneal Epithelial Stem Cells , 2012, Stem cells.

[59]  S. Cramer,et al.  On the Development of Neurocutaneous Units—Implications for the Histogenesis of Congenital, Acquired, and Dysplastic Nevi , 2012, The American Journal of dermatopathology.

[60]  Dong-Seok Kim,et al.  A Simple Assay Method for Melanosome Transfer , 2012, Annals of dermatology.

[61]  C. Bertolotto,et al.  Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma , 2011, Oncogene.

[62]  U. Suter,et al.  Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin , 2009, Cell.

[63]  C. Crum,et al.  Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts , 2008, Journal of cutaneous pathology.

[64]  F. Hu,et al.  A Genome-Wide Association Study Identifies Novel Alleles Associated with Hair Color and Skin Pigmentation , 2008, PLoS genetics.

[65]  T. Jenner,et al.  Stem cell factor/c-Kit signalling in normal and androgenetic alopecia hair follicles. , 2008, The Journal of endocrinology.

[66]  R. Dummer,et al.  In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.

[67]  S. Nishikawa,et al.  Generating quiescent stem cells. , 2007, Pigment cell research.

[68]  R. Sturm A golden age of human pigmentation genetics. , 2006, Trends in genetics : TIG.

[69]  W. Pavan,et al.  Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Nishikawa,et al.  Molecular characterization of melanocyte stem cells in their niche , 2005, Development.

[71]  Jean-Philippe Brunet,et al.  The melanocyte differentiation program predisposes to metastasis after neoplastic transformation , 2005, Nature Genetics.

[72]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  W. Mcfarland,et al.  Improving the Accuracy of Fetal Foot Length to Confirm Gestational Duration , 2005, Obstetrics and gynecology.

[74]  Satoshi Itami,et al.  Mesenchymal–epithelial interactions in the skin , 2004, The Journal of cell biology.

[75]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[76]  John Calvin Reed,et al.  Humanin peptide suppresses apoptosis by interfering with Bax activation , 2003, Nature.

[77]  H. Asada,et al.  Epithelial-mesenchymal interactions in wounds: treatment of palmoplantar wounds by nonpalmoplantar pure epidermal sheet grafts. , 2001, Archives of dermatology.

[78]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[79]  A. Graham,et al.  The expression of the c‐kit receptor by epidermal melanocytes may be reduced in vitiligo , 1996, The British journal of dermatology.

[80]  James S Goydos,et al.  Acral Lentiginous Melanoma. , 2016, Cancer treatment and research.

[81]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[82]  A. Gown,et al.  The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45 , 2004, Anatomy and Embryology.