Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case
暂无分享,去创建一个
[1] J. Gauthier,et al. Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .
[2] A. I. Solomon,et al. Constraints on relaxation rates for N-level quantum systems , 2003, quant-ph/0312231.
[3] J. Swoboda. Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.
[5] B. Piccoli,et al. Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .
[6] U. Boscain,et al. On the minimum time problem for driftless left-invariant control systems on SO(3) , 2002 .
[7] Bernard Bonnard,et al. Geodesic flow of the averaged controlled Kepler equation , 2009 .
[8] Jean-Baptiste Caillau,et al. Conjugate and cut loci of a two-sphere of revolution with application to optimal control , 2009 .
[9] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[10] T. Seideman,et al. Intense laser alignment in dissipative media as a route to solvent dynamics. , 2005, Physical review letters.
[11] Bernard Bonnard,et al. Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Integrable Case , 2009, SIAM J. Control. Optim..
[12] Constantin Carathéodory,et al. Calculus of variations and partial differential equations of the first order , 1965 .
[13] Dominique Sugny,et al. Field‐free molecular alignment of CO2 mixtures in presence of collisional relaxation , 2008 .
[14] U. Boscain,et al. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds , 2006, math/0609566.
[15] Jean-Baptiste Caillau,et al. Second order optimality conditions in the smooth case and applications in optimal control , 2007 .
[16] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[17] David Bao,et al. Zermelo navigation on Riemannian manifolds , 2003 .
[18] Bernard Bonnard,et al. UNE APPROCHE G EOM ETRIQUE DU CONTR ^ OLE OPTIMAL DE L'ARC ATMOSPH ERIQUE DE LA NAVETTE SPATIALE , 2002 .
[19] S. Schirmer,et al. Orbits of quantum states and geometry of Bloch vectors for N-level systems , 2003, quant-ph/0308004.
[20] Heinz Schättler,et al. The local structure of time-optimal trajectories in dimension three under generic conditions , 1988 .
[21] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[22] U. Boscain,et al. Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.
[23] C. Altafini,et al. QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.
[24] Jean-Paul Gauthier,et al. On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance , 2002 .
[25] Bernard Bonnard,et al. Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust , 2007 .
[26] E B Lee,et al. Foundations of optimal control theory , 1967 .
[27] D. Sugny,et al. Time-optimal control of a two-level dissipative quantum system , 2007, 0708.3794.
[28] H. Jauslin,et al. Control of Quantum Dynamics by Laser Pulses: Adiabatic Floquet Theory , 2003 .