Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere

[1]  Sudjito,et al.  Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock , 2014 .

[2]  P. Abdul Salam,et al.  Estimation of higher heating value of biomass from proximate analysis: A new approach , 2012 .

[3]  Pietro Bartocci,et al.  Thermogravimetric analysis and kinetic study of poplar wood pyrolysis , 2012 .

[4]  A. Aboulkas,et al.  Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. , 2011, Bioresource technology.

[5]  D. Vamvuka,et al.  Combustion behaviour of biomass fuels and their blends with lignite , 2011 .

[6]  Raymond R. Tan,et al.  Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis , 2011 .

[7]  Razif Harun,et al.  Exploring alkaline pre-treatment of microalgal biomass for bioethanol production , 2011 .

[8]  Xiaoqian Ma,et al.  Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations , 2011 .

[9]  Meisam Tabatabaei,et al.  Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran , 2011 .

[10]  Ángeles Cancela,et al.  Raceway Pond Design for Micoalgae Culture for Biodiesel , 2011 .

[11]  Yangmin Gong,et al.  Biodiesel production with microalgae as feedstock: from strains to biodiesel , 2011, Biotechnology Letters.

[12]  R. M. Willis,et al.  Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. , 2011, Bioresource technology.

[13]  Jeffrey Philip Obbard,et al.  Incremental energy supply for microalgae culture in a photobioreactor. , 2011, Bioresource technology.

[14]  K. Açıkalın Thermogravimetric analysis of walnut shell as pyrolysis feedstock , 2011 .

[15]  Ayhan Demirbas,et al.  Use of algae as biofuel sources. , 2010 .

[16]  O. Kruse,et al.  Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. , 2010, Journal of biotechnology.

[17]  D. Briassoulis,et al.  An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. , 2010, Bioresource technology.

[18]  Amanda Lea-Langton,et al.  Hydrothermal processing of microalgae using alkali and organic acids , 2010 .

[19]  Shinichiro Hirabayashi,et al.  Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect , 2010 .

[20]  L. Jelemenský,et al.  Kinetic study of wood chips decomposition by TGA , 2010 .

[21]  Frantisek Kastanek,et al.  Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products , 2010 .

[22]  Anthony V. Bridgwater,et al.  A systematic study of the kinetics of lignin pyrolysis , 2010 .

[23]  Rashmi,et al.  Prospects of biodiesel production from microalgae in India , 2009 .

[24]  Razif Harun,et al.  Microalgal biomass as a fermentation feedstock for bioethanol production , 2009 .

[25]  Wen-Teng Wu,et al.  A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae , 2009 .

[26]  P. Coutinho,et al.  Enriching Rotifers with “Premium” Microalgae. Nannochloropsis gaditana , 2009, Marine Biotechnology.

[27]  S. Harrison,et al.  Lipid productivity as a key characteristic for choosing algal species for biodiesel production , 2009, Journal of Applied Phycology.

[28]  L. Tognotti,et al.  Effect of the heating rate on the devolatilization of biomass residues , 2008 .

[29]  F. G. Acién,et al.  Characterization of a flat plate photobioreactor for the production of microalgae , 2008 .

[30]  A. Jess,et al.  Kinetic study of Chinese biomass slow pyrolysis : Comparison of different kinetic models , 2007 .

[31]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[32]  E. Jin,et al.  Isolation and Characterization of a Xanthophyll Aberrant Mutant of the Green Alga Nannochloropsis oculata , 2006, Marine Biotechnology.

[33]  J. Poncet,et al.  Cryopreservation of the unicellular marine alga, Nannochloropsis oculata , 2003, Biotechnology Letters.

[34]  Yusuf Chisti,et al.  Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. , 2003 .

[35]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[36]  R. Kleijn,et al.  Development of In Vivo Sponge Cultures: Particle Feeding by the Tropical Sponge Pseudosuberites aff. andrewsi , 2001, Marine Biotechnology.

[37]  Maria Izquierdo,et al.  Different approaches to proximate analysis by thermogravimetry analysis , 2001 .

[38]  I. E. Huertas,et al.  Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments , 2000, Journal of Applied Phycology.

[39]  T. Minowa,et al.  Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae , 1999 .

[40]  F B Metting,et al.  Biodiversity and application of microalgae , 1996, Journal of Industrial Microbiology.

[41]  B. Beamish Proximate analysis of New Zealand and Australian coals by thermogravimetry , 1994 .

[42]  Malcolm R. Brown,et al.  THE BIOCHEMICAL COMPOSITION OF MARINE MICROALGAE FROM THE CLASS EUSTIGMATOPHYCEAE 1 , 1993 .

[43]  Hongpeng Liu,et al.  Reactivity and Kinetic Analysis of Biomass during Combustion , 2012 .

[44]  R. P. John,et al.  Micro and macroalgal biomass: a renewable source for bioethanol. , 2011, Bioresource technology.

[45]  Razif Harun,et al.  Influence of acid pre-treatment on microalgal biomass for bioethanol production , 2011 .

[46]  A. Shilton,et al.  Wastewater treatment high rate algal ponds for biofuel production. , 2011, Bioresource technology.

[47]  L. Lardon,et al.  Life-cycle assessment of microalgae culture coupled to biogas production. , 2011, Bioresource technology.

[48]  YuTing Tang,et al.  Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. , 2011, Bioresource technology.

[49]  Chiun-Hsun Chen,et al.  Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. , 2009, Bioresource technology.

[50]  L. Rodolfi,et al.  Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor , 2009, Biotechnology and bioengineering.

[51]  R. Egashira,et al.  An Investigation into the Thermal Decomposition of Nigerian Coal , 2005 .

[52]  D. Ugarte The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture , 2000 .

[53]  J. Zondlo,et al.  Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating , 1999 .

[54]  Homer E. KlSSlNGER Reaction Kinetics in Differential Thermal Analysis , 1957 .