Locating terms in the Stern-Brocot tree

In this paper we discover an efficient method for answering two related questions involving the Stern-Brocot tree: What is thejth term in thenth level of the tree? and What is the exact position of the fractionrsin the tree?

[1]  Martin W. Bunder,et al.  Linkages between the Gauss map and the Stern- Brocot tree , 2006 .

[2]  Richard S. Bird,et al.  FUNCTIONAL PEARL: Enumerating the rationals , 2006, Journal of Functional Programming.

[3]  Lars Lundberg,et al.  Generalizations of the floor and ceiling functions using the Stern-Brocot tree , 2006 .

[4]  M. Niqui,et al.  Exact arithmetic on the Stern-Brocot tree , 2007, J. Discrete Algorithms.

[5]  Milad Niqui,et al.  Admissible digit sets , 2006, Theor. Comput. Sci..

[6]  Herbert S. Wilf,et al.  Recounting the Rationals , 2000, Am. Math. Mon..

[7]  Lars Lundberg,et al.  The maximum gain of increasing the number of preemptions in multiprocessor scheduling , 2009, Acta Informatica.

[8]  Richard Stong,et al.  Recounting the Rationals, Continued: 10906 , 2003, The American mathematical monthly.

[9]  Jeremy Gibbons,et al.  Enumerating the Rationals , 2004 .

[10]  Donald E. Knuth,et al.  Problem 10906 , 2001, The American mathematical monthly.