Maximum likelihood estimation of generator stability constants using SSER test data

The performance of the maximum likelihood (ML) method when used to determine simulation data for generators from standstill frequency response (SSFR) tests is evaluated. The robustness of the ML method is demonstrated by analyses made with SSFR data from tests on the Rockport 722 MVA generator. It is shown that a unique set of parameters can be obtained, and the noise effects can be dealt with effectively when the ML technique is used to estimate machine parameters. >

[1]  A. Keyhani,et al.  The Effects of Noise on Frequency-Domain Parameter Estimation of Synchronous Machine Models , 1989, IEEE Power Engineering Review.

[2]  A. Keyhani,et al.  Maximum Likelihood Estimation of Solid-Rotor Synchronous Machine Parameters from SSFR Test Data , 1989, IEEE Power Engineering Review.

[3]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part I: Theory and Techniques , 1978, IEEE Transactions on Power Apparatus and Systems.

[4]  Karl Johan Åström Maximum likelihood and prediction error methods , 1980, Autom..

[5]  K. Åström,et al.  Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model , 1974 .

[6]  N. Jaleeli,et al.  A Quasilinearization Based Algorithm for the Identification of Transient and Subtransient Parameters of Synchronous Machines , 1986, IEEE Transactions on Power Systems.

[7]  P.L. Dandeno Current Usage & Suggested Practices in Power System Stability Simulations for Synchronous Machines , 1986, IEEE Transactions on Energy Conversion.

[8]  J. H. Fish,et al.  Saturation Functions for Synchronous Generators from Finite Elements , 1987, IEEE Power Engineering Review.

[9]  R. C. Beck,et al.  Time-domain identification of synchronous machine parameters from simple standstill tests , 1990 .

[10]  R. Mehra,et al.  Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations , 1974 .

[11]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[12]  C. Cobelli,et al.  On parameter and structural identifiability: Nonunique observability/reconstructibility for identifiable systems, other ambiguities, and new definitions , 1980 .

[13]  L. N. Hannett,et al.  Test and simulation of network dynamic response using SSFR and RTDR derived synchronous machine models , 1990 .

[14]  L. Hannett,et al.  Determination of Synchronous Machine Electrical Characteristics by Test , 1983, IEEE Transactions on Power Apparatus and Systems.

[15]  J. C. Balda,et al.  Measurement of Synchronous Machine Parameters by a Modified Frequency Response Method???Part I: Theory , 1987, IEEE Power Engineering Review.

[16]  J. S. Edmonds,et al.  Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .

[17]  P. L. Dandeno,et al.  Development of Detailed Turbogenerator Equivalent Circuits from Standstill Frequency Response Measurements , 1981 .

[18]  R. G. Harley,et al.  Measurement of Synchronous Machine Parameters by a Modified Frequency Response Method???Part II: Measured Results , 1987, IEEE Power Engineering Review.

[19]  S. Yokokawa,et al.  Idenntification of Parameters for Power System Stability Analysis Using Kalman Filter , 1981, IEEE Transactions on Power Apparatus and Systems.

[20]  W. J. Wilson,et al.  Synchronous machine parameter identification: a time domain approach , 1988 .