Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67

Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5–1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05–0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.

[1]  J. Bovy,et al.  The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment , 2017, 1706.00009.

[2]  L. Casamiquela,et al.  OCCASO – II. Physical parameters and Fe abundances of red clump stars in 18 open clusters , 2017, 1706.03656.

[3]  P. Cargile,et al.  The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging , 2017, 1704.03465.

[4]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[5]  E. Grebel,et al.  Observing the products of stellar evolution in the old open cluster M67 with APOGEE , 2017, 1701.00979.

[6]  C. Unterborn,et al.  The Effects of Mg/Si on the Exoplanetary Refractory Oxygen Budget , 2016, 1604.08309.

[7]  D. A. García-Hernández,et al.  Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186 , 2016, 1612.01598.

[8]  A. Vanderburg,et al.  THE K2 M67 STUDY: AN EVOLVED BLUE STRAGGLER IN M67 FROM K2 MISSION ASTEROSEISMOLOGY , 2016, 1611.01158.

[9]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. I. NEUTRAL SILICON , 2016, 1610.05888.

[10]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. II. NEUTRAL MAGNESIUM , 2016, 1610.05893.

[11]  D. Soderblom,et al.  THE K2 M67 STUDY: REVISITING OLD FRIENDS WITH K2 REVEALS OSCILLATING RED GIANTS IN THE OPEN CLUSTER M67 , 2016, 1610.03060.

[12]  J. Brewer,et al.  C/O AND Mg/Si RATIOS OF STARS IN THE SOLAR NEIGHBORHOOD , 2016, 1608.06286.

[13]  M. Asplund,et al.  The chemical compositions of solar twins in the open cluster M67 , 2016, 1608.03788.

[14]  C. Prieto,et al.  CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE , 2016, 1607.06102.

[15]  R. Saglia,et al.  Search for giant planets in M67 - III. Excess of hot Jupiters in dense open clusters , 2016, 1606.05247.

[16]  J. Laskar,et al.  NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 , 2016, 1605.09788.

[17]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[18]  G. González Variability among stars in the M 67 field from Kepler/K2-Campaign-5 light curves , 2016, 1603.06638.

[19]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution , 2016, 1602.03289.

[20]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[21]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[22]  Jo Bovy,et al.  THE CHEMICAL HOMOGENEITY OF OPEN CLUSTERS , 2015, 1510.06745.

[23]  J. Richer,et al.  Atomic Diffusion in Stars , 2015 .

[24]  P. Barklem,et al.  Mg line formation in late-type stellar atmospheres: II. Calculations in a grid of 1D models , 2015, 1510.05165.

[25]  D. Latham,et al.  STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER M67 (NGC 2682). I. MEMBERSHIPS, BINARIES, AND KINEMATICS , 2015, 1507.01949.

[26]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[27]  G. Carraro,et al.  Testing the chemical tagging technique with open clusters , 2015, 1503.02082.

[28]  C. Prieto,et al.  THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY , 2015, 1502.04080.

[29]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[30]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[31]  C. Prieto,et al.  SODIUM AND OXYGEN ABUNDANCES IN THE OPEN CLUSTER NGC 6791 FROM APOGEE H-BAND SPECTROSCOPY , 2014, 1411.2034.

[32]  Tucson,et al.  C/O RATIOS OF STARS WITH TRANSITING HOT JUPITER EXOPLANETS, , 2014, 1403.6891.

[33]  L. Pasquini,et al.  Three planetary companions around M 67 stars , 2014, 1401.4905.

[34]  A. Korn,et al.  Abundances and possible diffusion of elements in M 67 stars , 2013, 1310.6297.

[35]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[36]  D. Bizyaev,et al.  CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST , 2012, 1212.4091.

[37]  Maria Bergemann,et al.  Non‐LTE line formation of Fe in late‐type stars – I. Standard stars with 1D and 〈3D〉 model atmospheres , 2012, 1207.2455.

[38]  L. Pasquini,et al.  Search for giant planets in M 67 - I. Overview , 2012, 1206.5820.

[39]  B. Plez,et al.  Turbospectrum: Code for spectral synthesis , 2012 .

[40]  A. Korn,et al.  ATOMIC DIFFUSION AND MIXING IN OLD STARS. III. ANALYSIS OF NGC 6397 STARS UNDER NEW CONSTRAINTS , 2012, 1204.5600.

[41]  S. Ekstrom,et al.  Thermohaline instability and rotation-induced mixing - III. Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars of various metallicities , 2012, 1204.5193.

[42]  E. Friel,et al.  A CHEMICAL ABUNDANCE STUDY OF 10 OPEN CLUSTERS BASED ON WIYN-HYDRA SPECTROSCOPY , 2011, 1107.4139.

[43]  M. Asplund,et al.  Non-LTE calculations for neutral Na in late-type stars using improved atomic data , 2011, 1102.2160.

[44]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[45]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[46]  E. Friel,et al.  ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. V. Be 31, Be 32, Be 39, M 67, NGC 188, AND NGC 1193 , 2010 .

[47]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[48]  E. Rossetti,et al.  Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682) , 2009, 0910.0723.

[49]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[50]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[51]  Tod R. Lauer,et al.  RR LYRAE VARIABLES IN TWO FIELDS IN THE SPHEROID OF M31 , 2009, 0904.4290.

[52]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[53]  F. Grundahl,et al.  Atomic diffusion and mixing in old stars II. Observations of stars in the globular cluster NGC 639 , 2008, 0809.0317.

[54]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[55]  J. Anderson,et al.  Ground-based CCD astrometry with wide-field imagers - II. A star catalog for M 67: WFI@2.2 m MPG/ESO astrometry, FLAMES@VLT radial velocities , 2008, 0803.0004.

[56]  Denmark,et al.  Atomic Diffusion and Mixing in Old Stars. I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397 , 2007, 0709.0639.

[57]  B. J. Taylor The Benchmark Cluster Reddening Project. III. A Comparison of Reddening Values Derived from F and K Stars in NGC 752 , 2007 .

[58]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[59]  P. François,et al.  NLTE determination of the aluminium abundance in a homogeneous sample of extremely metal-poor stars , 2007, 0802.1519.

[60]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[61]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[62]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[63]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. I. Open Clusters , 2005, astro-ph/0504193.

[64]  J. Richer,et al.  Models for Solar Abundance Stars with Gravitational Settling and Radiative Accelerations: Application to M67 and NGC 188 , 2004, astro-ph/0402544.

[65]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[66]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[67]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[68]  P. Montegriffo,et al.  Towards the absolute planes: a new calibration of the bolometric corrections and temperature scales for Population II giants , 1998, astro-ph/9804297.

[69]  Ann Merchant Boesgaard,et al.  Chemical composition of open clusters. III: Iron and carbon in F dwarfs in Coma, Praesepe, and M67 , 1992 .

[70]  J. Cohen Abundances in globular cluster red giants. III - M71, M67, and NGC 2420 , 1980 .