Osteogenic potential of a biosilica-coated P(UDMA-co-MPS) copolymer.

A P(UDMA-co-MPS) copolymer was surface-functionalized through the polycondensation activity of the enzyme silicatein. The resulting biosilica coating significantly enhanced mineralization of osteoblastic cells, thereby revealing its osteogenic potential. Consequently, the functionalized copolymer may be explored as an alternative to conventionally used acrylics in applications where stable bone-material interfaces are required.

[1]  C. Charitidis,et al.  Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces , 2012, Nanotechnology.

[2]  T. Link,et al.  Formation of a micropatterned titania photocatalyst by microcontact printed silicatein on gold surfaces. , 2012, Chemical communications.

[3]  R. G. Richards,et al.  In search of an osteoblast cell model for in vitro research. , 2012, European cells & materials.

[4]  M. Wiens,et al.  Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber‐like spicules , 2012, The FEBS journal.

[5]  Gladius Lewis,et al.  Viscoelastic properties of injectable bone cements for orthopaedic applications: state-of-the-art review. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  G. Glasser,et al.  Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. , 2011, Acta biomaterialia.

[7]  W. Tremel,et al.  Chemical mimicry: hierarchical 1D TiO2@ZrO2 core-shell structures reminiscent of sponge spicules by the synergistic effect of silicatein-α and silintaphin-1. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[8]  W. Müller,et al.  Silintaphin‐1 – interaction with silicatein during structure‐guiding bio‐silica formation , 2011, The FEBS journal.

[9]  U. Kolb,et al.  The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. , 2010, Biomaterials.

[10]  F. Cui,et al.  Bioengineering of the silica-polymerizing enzyme silicatein-alpha for a targeted application to hydroxyapatite. , 2010, Acta biomaterialia.

[11]  M. Wiens,et al.  Bioinspired Fabrication of Bio‐Silica‐Based Bone‐Substitution Materials , 2010 .

[12]  H. Ushijima,et al.  Osteogenic Potential of Biosilica on Human Osteoblast-Like (SaOS-2) Cells , 2010, Calcified Tissue International.

[13]  María Vallet-Regí,et al.  Sol-gel silica-based biomaterials and bone tissue regeneration. , 2010, Acta biomaterialia.

[14]  Todd D. Jaeblon,et al.  Polymethylmethacrylate: Properties and Contemporary Uses in Orthopaedics , 2010, The Journal of the American Academy of Orthopaedic Surgeons.

[15]  W. Tremel,et al.  Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials , 2009, Applied Microbiology and Biotechnology.

[16]  F. Velasco,et al.  Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy , 2009 .

[17]  R. Legeros,et al.  Calcium phosphate-based osteoinductive materials. , 2008, Chemical reviews.

[18]  K. Kikuta,et al.  Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane , 2008, Journal of materials science. Materials in medicine.

[19]  T. Link,et al.  Morphogenetic Activity of Silica and Bio-silica on the Expression of Genes Controlling Biomineralization Using SaOS-2 Cells , 2007, Calcified Tissue International.

[20]  P. Lambrechts,et al.  Systematic review of the chemical composition of contemporary dental adhesives. , 2007, Biomaterials.

[21]  A. Barth Infrared spectroscopy of proteins. , 2007, Biochimica et biophysica acta.

[22]  Kuei-Chien Chang,et al.  Preparation of superhydrophobic silica‐based films by using polyethylene glycol and tetraethoxysilane , 2007 .

[23]  G. Pharr,et al.  Nanoindentation of biodegradable cellulose diacetate-graft-poly(L-lactide) copolymers: Effect of molecular composition and thermal aging on mechanical properties , 2007 .

[24]  H. Oudadesse,et al.  Comparison of the bony remodelling of two synthetic biomaterials: aragonite 55% and aragonite 55% with active substance , 2007, Biomedical materials.

[25]  J. Thompson,et al.  High-Pressure Infrared Absorption Spectroscopy of Poly(Methyl Methacrylate) , 2007 .

[26]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[27]  H. Moriya,et al.  Mechanical and histological evaluation of a PMMA-based bone cement modified with gamma-methacryloxypropyltrimethoxysilane and calcium acetate. , 2006, Biomaterials.

[28]  J. Roether,et al.  Development of high-viscosity, two-paste bioactive bone cements. , 2005, Biomaterials.

[29]  H. Arikawa,et al.  Physical and mechanical properties of PMMA resins containing gamma-methacryloxypropyltrimethoxysilane. , 2004, Journal of oral rehabilitation.

[30]  M. Buggy,et al.  Bone cements and fillers: A review , 2003, Journal of materials science. Materials in medicine.

[31]  A. Matthews,et al.  On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour , 2000 .

[32]  G. Stucky,et al.  Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Brian J. Briscoe,et al.  Nano-indentation of polymeric surfaces , 1998 .

[34]  Satoru Watanabe,et al.  In-situ infrared characterization of a chemically oxidized silicon surface dissolving in aqueous hydrofluoric acid , 1995 .

[35]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[36]  A. Gent,et al.  Inelastic electron tunneling spectroscopy of silane coupling agents adsorbed on alumina , 1985 .

[37]  A. Boccaccini,et al.  Bioactive glass-based scaffolds for bone tissue engineering. , 2012, Advances in biochemical engineering/biotechnology.

[38]  Werner Müller,et al.  Silicatein-Mediated Polycondensation of Orthosilicic Acid: Modeling of a Catalytic Mechanism Involving Ring Formation , 2010, Silicon.

[39]  F. Rubio,et al.  A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS). , 1998 .