Matrix completion under interval uncertainty

Matrix completion under interval uncertainty can be cast as a matrix completion problem with element-wise box constraints. We present an efficient alternating-direction parallel coordinate-descent method for the problem. We show that the method outperforms any other known method on a benchmark in image in-painting in terms of signal-to-noise ratio, and that it provides high-quality solutions for an instance of collaborative filtering with 100,198,805 recommendations within 5 minutes on a single personal computer.

[1]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[2]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[3]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[4]  Stephen J. Wright,et al.  Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.

[5]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[6]  Yehuda Koren,et al.  Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[7]  D. Goldfarb,et al.  Solving low-rank matrix completion problems efficiently , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[8]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[9]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[10]  Jared Tanner,et al.  Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..

[11]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[12]  Justin P. Haldar,et al.  Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization , 2009, IEEE Signal Processing Letters.

[13]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[14]  Nathan Srebro,et al.  Learning with matrix factorizations , 2004 .

[15]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[16]  Peter Richtárik,et al.  On optimal probabilities in stochastic coordinate descent methods , 2013, Optim. Lett..

[17]  Constantine Caramanis,et al.  Robust Matrix Completion with Corrupted Columns , 2011, ArXiv.

[18]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[19]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[20]  Haesun Park,et al.  Bounded Matrix Low Rank Approximation , 2012, 2012 IEEE 12th International Conference on Data Mining.

[21]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[22]  Ohad Shamir,et al.  Large-Scale Convex Minimization with a Low-Rank Constraint , 2011, ICML.

[23]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[24]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[25]  Peter Richtárik,et al.  Separable approximations and decomposition methods for the augmented Lagrangian , 2013, Optim. Methods Softw..

[26]  Dima Grigoriev,et al.  Complexity of Quantifier Elimination in the Theory of Algebraically Closed Fields , 1984, MFCS.

[27]  Yannis Sismanis,et al.  Sparkler: supporting large-scale matrix factorization , 2013, EDBT '13.

[28]  David R. Karger,et al.  The complexity of matrix completion , 2006, SODA '06.

[29]  Peter J. Haas,et al.  Shared-memory and shared-nothing stochastic gradient descent algorithms for matrix completion , 2013, Knowledge and Information Systems.

[30]  Peter Richtárik,et al.  On the complexity of parallel coordinate descent , 2015, Optim. Methods Softw..

[31]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[32]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[33]  Peter Richtárik,et al.  Distributed Block Coordinate Descent for Minimizing Partially Separable Functions , 2014, 1406.0238.

[34]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[35]  Jieping Ye,et al.  Rank-One Matrix Pursuit for Matrix Completion , 2014, ICML.

[36]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[37]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2004, Machine Learning.

[38]  Thomas Hofmann,et al.  Robust collaborative filtering , 2007, RecSys '07.

[39]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Nonconvex Factorization , 2015, FOCS.

[40]  Raghunandan H. Keshavan Efficient algorithms for collaborative filtering , 2012 .

[41]  Suvrit Sra,et al.  Correlation matrix nearness and completion under observation uncertainty , 2015 .

[42]  Peter J. Haas,et al.  Large-scale matrix factorization with distributed stochastic gradient descent , 2011, KDD.

[43]  Fotios Petropoulos,et al.  'Horses for Courses' in demand forecasting , 2014, Eur. J. Oper. Res..

[44]  Masashi Sugiyama,et al.  A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices , 2010, ICML.

[45]  Rainer Gemulla,et al.  Distributed Matrix Completion , 2012, 2012 IEEE 12th International Conference on Data Mining.

[46]  Guoyin Li,et al.  Robust least square semidefinite programming with applications , 2014, Comput. Optim. Appl..

[47]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[48]  Peter Richt,et al.  Distributed Coordinate Descent Method for Learning with Big Data , 2016 .

[49]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[50]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[51]  Martin Jaggi,et al.  A Simple Algorithm for Nuclear Norm Regularized Problems , 2010, ICML.

[52]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[53]  Xiaonan Li,et al.  Operations research and data mining , 2008, Eur. J. Oper. Res..

[54]  Yuxin Chen,et al.  Spectral Compressed Sensing via Structured Matrix Completion , 2013, ICML.

[55]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[56]  Vaithilingam Jeyakumar,et al.  Geometric conditions for Kuhn-Tucker sufficiency of global optimality in mathematical programming , 2009, Eur. J. Oper. Res..

[57]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..