Predictions of the WFIRST Microlensing Survey. I. Bound Planet Detection Rates

The Wide Field InfraRed Survey Telescope (WFIRST) is the next NASA astrophysics flagship mission, to follow the James Webb Space Telescope. The WFIRST mission was chosen as the top-priority large space mission of the 2010 astronomy and astrophysics decadal survey in order to achieve three primary goals: to study dark energy via a wide-field imaging survey, to study exoplanets via a microlensing survey, and to enable a guest observer program. Here we assess the ability of the several WFIRST designs to achieve the goal of the microlensing survey to discover a large sample of cold, low-mass exoplanets with semimajor axes beyond roughly one astronomical unit, which are largely impossible to detect with any other technique. We present the results of a suite of simulations that span the full range of the proposed WFIRST architectures, from the original design envisioned by the decadal survey, to the current design, which utilizes a 2.4 m telescope donated to NASA. By studying such a broad range of architectures, we are able to determine the impact of design trades on the expected yields of detected exoplanets. In estimating the yields we take particular care to ensure that our assumed Galactic model predicts microlensing event rates that match observations, consider the impact that inaccuracies in the Galactic model might have on the yields, and ensure that numerical errors in light-curve computations do not bias the yields for the smallest-mass exoplanets. For the nominal baseline WFIRST design and a fiducial planet mass function, we predict that a total of ~1400 bound exoplanets with mass greater than ~0.1 M⊕ should be detected, including ~200 with mass ≲3 M⊕. WFIRST should have sensitivity to planets with mass down to ~0.02 M⊕, or roughly the mass of Ganymede.

[1]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[2]  E. Bachelet,et al.  Measuring the Microlensing Parallax from Various Space Observatories , 2018, 1803.00689.

[3]  Akihiko Fukui,et al.  THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNE MASS , 2016 .

[4]  OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? , 2008, 0804.1354.

[5]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[6]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[7]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[8]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[9]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[10]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[11]  B. Wang,et al.  Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds , 2017, 1703.09384.

[12]  P. Goldreich,et al.  The formation of planetesimals. , 1973 .

[13]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[14]  T. Mazeh,et al.  The unseen companion of HD114762: a probable brown dwarf , 1989, Nature.

[15]  Howard Isaacson,et al.  The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets , 2017, 1712.04042.

[16]  Lisa Kaltenegger,et al.  A Volcanic Hydrogen Habitable Zone , 2017 .

[17]  S. Hawley,et al.  THE IMPLICATIONS OF M DWARF FLARES ON THE DETECTION AND CHARACTERIZATION OF EXOPLANETS AT INFRARED WAVELENGTHS , 2011, 1111.1793.

[18]  E. Kerins,et al.  Synthetic microlensing maps of the Galactic bulge , 2008, 0805.4626.

[19]  M. R. Haas,et al.  TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.

[20]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[21]  C. H. Ling,et al.  A companion on the planet/brown dwarf mass boundary on a wide orbit discovered by gravitational microlensing , 2017, 1704.01121.

[22]  Shude Mao,et al.  Detectability of orbital motion in stellar binary and planetary microlenses , 2010, 1010.5940.

[23]  K. Ulaczyk,et al.  PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS , 2014, 1411.7378.

[24]  S. Cassisi,et al.  The Initial Mass Function of the Galactic Bulge down to ~0.15 M☉ , 1999, astro-ph/9906452.

[25]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[26]  J. Anderson,et al.  WFIRST Exoplanet Mass-measurement Method Finds a Planetary Mass of 39 ± 8 M⊕ for OGLE-2012-BLG-0950Lb , 2018, The Astronomical Journal.

[27]  Laird M. Close,et al.  A UNIFORM ANALYSIS OF 118 STARS WITH HIGH-CONTRAST IMAGING: LONG-PERIOD EXTRASOLAR GIANT PLANETS ARE RARE AROUND SUN-LIKE STARS , 2009, 0909.4531.

[28]  John C. Geary,et al.  The Kepler mission: a wide-field-of-view photometer designed to determine the frequency of Earth-size planets around solar-like stars , 2003, SPIE Astronomical Telescopes + Instrumentation.

[29]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[30]  J. Papaloizou,et al.  Dynamical relaxation and massive extrasolar planets , 2001 .

[31]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[32]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[33]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[34]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[35]  H. Mizuno,et al.  Formation of the Giant Planets , 1980 .

[36]  B. Scott Gaudi,et al.  Characterization of Gravitational Microlensing Planetary Host Stars , 2007 .

[37]  Stuart Bowyer,et al.  The 1997 reference of diffuse night sky brightness , 1998 .

[38]  K. Kuijken,et al.  Hubble Space Telescope WFPC2 Proper Motions in Two Bulge Fields: Kinematics and Stellar Population of the Galactic Bulge , 2002, astro-ph/0207116.

[39]  C. H. Ling,et al.  The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb , 2017, 1703.08639.

[40]  M. Penny SPEEDING UP LOW-MASS PLANETARY MICROLENSING SIMULATIONS AND MODELING: THE CAUSTIC REGION OF INFLUENCE , 2013, 1311.1050.

[41]  William F. Welsh,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES , 2011, 1107.5207.

[42]  A. Gal-Yam,et al.  MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS , 2012, 1201.1002.

[43]  C. H. Ling,et al.  MOA-2010-BLG-311: A planetary candidate below the threshold of reliable detection , 2012, 1210.6041.

[44]  L. Ramsey,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES REVISITED , 2015, 1508.05054.

[45]  Eric I. Barnes,et al.  Triaxiality Inhibitors in N-body Simulations , 2018, 1803.01676.

[46]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[47]  E. Kerins,et al.  Besançon Galactic model analysis of MOA-II microlensing: evidence for a mass deficit in the inner bulge , 2015, 1510.06347.

[48]  B. Gaudi,et al.  Microlensing by Multiple Planets in High-Magnification Events , 1998, astro-ph/9803282.

[49]  E. al.,et al.  Detectors for the James Webb Space Telescope near-infrared spectrograph. I. Readout mode, noise model, and calibration considerations , 2007, 0706.2344.

[50]  O. Gerhard,et al.  The Initial Mass Function of the Inner Galaxy Measured from OGLE-III Microlensing Timescales , 2017, 1706.04193.

[51]  Sean N. Raymond,et al.  The Demographics of Rocky Free-floating Planets and their Detectability by WFIRST , 2017, 1704.08749.

[52]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[53]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[54]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[55]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR , 2014, 1410.4219.

[56]  B. Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS: A SINGLE POPULATION OF LONG-PERIOD PLANETARY COMPANIONS TO M DWARFS CONSISTENT WITH MICROLENSING, RADIAL VELOCITY, AND DIRECT IMAGING SURVEYS , 2015, 1508.04434.

[57]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .

[58]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[59]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[60]  O. Gerhard,et al.  Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.

[61]  M. Penny,et al.  CAUSTIC STRUCTURES AND DETECTABILITY OF CIRCUMBINARY PLANETS IN MICROLENSING , 2015, 1510.08521.

[62]  E. Kokubo,et al.  Formation of Protoplanet Systems and Diversity of Planetary Systems , 2002 .

[63]  R. Pfeifle,et al.  CONFIRMATION OF THE PLANETARY MICROLENSING SIGNAL AND STAR AND PLANET MASS DETERMINATIONS FOR EVENT OGLE-2005-BLG-169 , 2015, 1507.08661.

[64]  Shude Mao,et al.  Proper motion dispersions of red clump giants in the galactic bulge: observations and model comparisons , 2007, 0704.1619.

[65]  Andrew Gould,et al.  A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host , 2017, Nature.

[66]  S. Seager Exoplanet Habitability , 2013, Science.

[67]  F. Anders,et al.  EXTINCTION MAPS TOWARD THE MILKY WAY BULGE: TWO-DIMENSIONAL AND THREE-DIMENSIONAL TESTS WITH APOGEE , 2014 .

[68]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[69]  B. Scott Gaudi,et al.  Distinguishing Between Binary-Source and Planetary Microlensing Perturbations , 1998 .

[70]  Alan Murta,et al.  GPC: General Polygon Clipper library , 2015 .

[71]  M. Schultheis,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Galactic bulge studies , 2012, 1204.4004.

[72]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[73]  A. Gould Hexadecapole Approximation in Planetary Microlensing , 2008, 0801.2578.

[74]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[75]  Bernard J. Rauscher Teledyne H1RG, H2RG, and H4RG Noise Generator , 2015 .

[76]  J. B. Marquette,et al.  ExELS: an exoplanet legacy science proposal for the ESA Euclid mission – I. Cold exoplanets , 2012, 1206.5296.

[77]  Jessica R. Lu,et al.  The Optical/Near-infrared Extinction Law in Highly Reddened Regions , 2018, 1801.08574.

[78]  EXPECTATIONS FROM A MICROLENSING SEARCH FOR PLANETS , 1996, astro-ph/9612062.

[79]  Bernard Rauscher,et al.  Wide-Field Infrared Survey Telescope (WFIRST) Interim Report , 2011 .

[80]  E. Kerins,et al.  Predictions for the Detection and Characterization of a Population of Free-floating Planets with K2 Campaign 9 , 2016, 1605.01059.

[81]  J. Saur,et al.  The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence , 2017, 1706.01126.

[82]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[83]  C. H. Ling,et al.  THE MICROLENSING EVENT RATE AND OPTICAL DEPTH TOWARD THE GALACTIC BULGE FROM MOA-II , 2013, 1305.0186.

[84]  C. Clarke,et al.  External photoevaporation of protoplanetary discs in Cygnus OB2: linking discs to star formation dynamical history , 2019, Monthly Notices of the Royal Astronomical Society.

[85]  R. Nemiroff,et al.  Finite source sizes and the information content of macho-type lens search light curves , 1994, astro-ph/9401005.

[86]  Detectability of extrasolar moons as gravitational microlenses , 2009, 0912.2076.

[87]  G. Bryden,et al.  An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf , 2017, 1703.08548.

[88]  A. Gould,et al.  A new photometric model of the Galactic bar using red clump giants , 2013, 1303.6430.

[89]  K. Ulaczyk,et al.  A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.

[90]  S. Cassisi,et al.  NEW INSIGHTS ON THE GALACTIC BULGE INITIAL MASS FUNCTION , 2015, 1505.07128.

[91]  K. Ulaczyk,et al.  CANDIDATE GRAVITATIONAL MICROLENSING EVENTS FOR FUTURE DIRECT LENS IMAGING , 2014, 1403.3092.

[92]  Rodger I. Thompson,et al.  Exploring the NRO Opportunity for a Hubble-Sized Wide-Field Near-IR Space Telescope - New WFIRST , 2012, 1210.7809.

[93]  M. C. Gálvez-Ortiz,et al.  J‐band variability of M dwarfs in the WFCAM Transit Survey , 2012, 1211.5288.

[94]  C. Henderson,et al.  ON THE FEASIBILITY OF CHARACTERIZING FREE-FLOATING PLANETS WITH CURRENT AND FUTURE SPACE-BASED MICROLENSING SURVEYS , 2016, 1603.05249.

[95]  M. Penny,et al.  WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY , 2015 .

[96]  Daniel Angerhausen,et al.  Rapid classification of TESS planet candidates with convolutional neural networks , 2019, Astronomy & Astrophysics.

[97]  Jacques-Robert Delorme,et al.  Baseline requirements for detecting biosignatures with the HabEx and LUVOIR mission concepts , 2018 .

[98]  Khadeejah A. Zamudio,et al.  Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25 , 2017, The Astrophysical journal. Supplement series.

[99]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[100]  Calen B. Henderson,et al.  PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1410.4843.

[101]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[102]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[103]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[104]  J. Anderson,et al.  The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star , 2017, 1703.06947.

[105]  C. Baltay,et al.  Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .

[106]  B. Scott Gaudi,et al.  OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1406.2316.

[107]  Jan Skowron,et al.  OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE , 2014, 1405.3134.

[108]  Stefano Casertano,et al.  Transiting extrasolar planetary candidates in the Galactic bulge , 2006, Nature.

[109]  Maxwell X. Cai,et al.  Survivability of planetary systems in young and dense star clusters , 2019, Astronomy & Astrophysics.

[110]  L. Girardi,et al.  Stellar populations in the Galactic bulge - Modelling the Galactic bulge with TRILEGAL , 2009 .

[111]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[112]  Debra A. Fischer,et al.  A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 , 2004 .

[113]  David R. Alexander,et al.  The NEXTGEN Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K , 1999, astro-ph/9907194.

[114]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[115]  E. Grebel,et al.  GalMod: A Galactic Synthesis Population Model , 2018, The Astrophysical Journal.

[116]  COLOR-MAGNITUDE DIAGRAM DISTRIBUTION OF THE BULGE RED CLUMP STARS : EVIDENCE FOR THE GALACTIC BAR , 1994, astro-ph/9404026.

[117]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[118]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[119]  John Asher Johnson,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.

[120]  J. Bochanski,et al.  BOSS ULTRACOOL DWARFS. I. COLORS AND MAGNETIC ACTIVITY OF M AND L DWARFS , 2014, 1410.0014.

[121]  A. Robin,et al.  Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data , 2011, 1111.5744.

[122]  J. Einasto Galactic mass modeling , 1979 .

[123]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[124]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[125]  Lennart Lindegren,et al.  ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.

[126]  S. Kenyon,et al.  Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths , 2006, astro-ph/0609140.

[127]  J. Yee LENS MASSES AND DISTANCES FROM MICROLENS PARALLAX AND FLUX , 2015, 1509.05043.

[128]  P. Yock,et al.  The Galactic Exoplanet Survey Telescope (GEST) , 2002, SPIE Astronomical Telescopes + Instrumentation.

[129]  K. Ulaczyk,et al.  Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey , 2015, 1512.09142.

[130]  Manchester,et al.  PREDICTIONS FOR MICROLENSING PLANETARY EVENTS FROM CORE ACCRETION THEORY , 2014, 1403.4936.

[131]  C. H. Ling,et al.  THE FIRST CIRCUMBINARY PLANET FOUND BY MICROLENSING: OGLE-2007-BLG-349L(AB)c , 2016, 1609.06720.

[132]  Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. II. THE FREQUENCY OF PLANETS ORBITING M DWARFS , 2014, 1404.7500.

[133]  A. Gould,et al.  MICROLENS MASSES FROM ASTROMETRY AND PARALLAX IN SPACE-BASED SURVEYS: FROM PLANETS TO BLACK HOLES , 2014, 1401.2463.

[134]  S. Mao,et al.  Can lensed stars be regarded as pointlike for microlensing by MACHOs , 1994 .

[135]  B. Gaudi,et al.  OGLE-2015-BLG-1482L: The First Isolated Low-mass Microlens in the Galactic Bulge , 2017, 1703.05887.

[136]  Kevin France,et al.  The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update , 2017, Optical Engineering + Applications.

[137]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[138]  M. Penny,et al.  POSSIBLE SOLUTION OF THE LONG-STANDING DISCREPANCY IN THE MICROLENSING OPTICAL DEPTH TOWARD THE GALACTIC BULGE BY CORRECTING THE STELLAR NUMBER COUNT , 2016, 1603.05797.

[139]  A. Robin,et al.  Population synthesis to constrain Galactic and stellar physics - I. Determining age and mass of thin-disc red-giant stars , 2017, 1702.01769.

[140]  Jan Skowron,et al.  TRIPLE MICROLENS OGLE-2008-BLG-092L: BINARY STELLAR SYSTEM WITH A CIRCUMPRIMARY URANUS-TYPE PLANET , 2014, 1408.6223.

[141]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[142]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[143]  C. H. Ling,et al.  The frequency of snowline-region planets from four-years of OGLE-MOA-Wise second-generation microlensing. , 2015, Monthly notices of the Royal Astronomical Society.

[144]  Sergey E. Koposov,et al.  A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey , 2017, 1707.06660.

[145]  Steven R. Majewski,et al.  LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. I. DESCRIPTION AND APPLICATIONS OF THE RAYLEIGH–JEANS COLOR EXCESS METHOD , 2011, 1106.2542.

[146]  C. H. Ling,et al.  OGLE-2012-BLG-0950Lb: THE FIRST PLANET MASS MEASUREMENT FROM ONLY MICROLENS PARALLAX AND LENS FLUX , 2016, 1607.03267.

[147]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[148]  M. Penny,et al.  UKIRT-2017-BLG-001Lb: A Giant Planet Detected through the Dust , 2018, 1802.06795.

[149]  W. Lyra,et al.  Imaging the Distribution of Solids in Planet-forming Disks undergoing Hydrodynamical Instabilities with the Next Generation Very Large Array , 2019, 1902.01897.

[150]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[151]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[152]  H. Matsuhara,et al.  A NEW SAMPLE OF OBSCURED AGNs SELECTED FROM THE XMM-NEWTON AND AKARI SURVEYS , 2015, 1511.00431.

[153]  A. Gould,et al.  Stokes's Theorem Applied to Microlensing of Finite Sources , 1997 .

[154]  M. Schultheis,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[155]  G. Montagnier,et al.  The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances , 2014, 1405.1560.

[156]  David P. Bennett,et al.  Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.

[157]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[158]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[159]  E. Kerins,et al.  THE SPITZER MICROLENSING PROGRAM AS A PROBE FOR GLOBULAR CLUSTER PLANETS: ANALYSIS OF OGLE-2015-BLG-0448 , 2015, 1512.08520.

[160]  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[161]  Evgenya L. Shkolnik,et al.  PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS , 2014, 1411.3722.

[162]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[163]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[164]  Samuel Harvey Moseley,et al.  Morphology, near infrared luminosity, and mass of the galactic bulge from Cobe dirbe observations , 1995 .

[165]  Sang-Mok Cha,et al.  KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .

[166]  K. Masuda,et al.  MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008 .

[167]  J. Davenport,et al.  MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS , 2012, 1202.1902.

[168]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[169]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[170]  Matthew D. Lallo,et al.  Simulating point spread functions for the James Webb Space Telescope with WebbPSF , 2012, Other Conferences.

[171]  K. von Braun,et al.  The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.

[172]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[173]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[174]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[175]  David P. Bennett,et al.  Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2002 .

[176]  V. Safronov Ejection of Bodies from the Solar System in the Course of the Accumulation of the Giant Planets and the Formation of the Cometary Cloud , 1972 .

[177]  K. Ulaczyk,et al.  MASSES AND ORBITAL CONSTRAINTS FOR THE OGLE-2006-BLG-109Lb,c JUPITER/SATURN ANALOG PLANETARY SYSTEM , 2009, 0911.2706.

[178]  T. Lauer,et al.  THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY , 2012, 1204.0010.

[179]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[180]  J. Beuzit,et al.  HD 80606 b, a planet on an extremely elongated orbit , 2001, astro-ph/0106256.

[181]  Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. I. METHODOLOGY , 2014, 1404.7495.

[182]  Xiaohui Fan,et al.  The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection , 2017, 1712.01205.

[183]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[184]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[185]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[186]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[187]  D. Minniti,et al.  VVV Survey Microlensing Events in the Galactic Center Region , 2017, 1712.07667.

[188]  K. Ulaczyk,et al.  Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing , 2008, Science.

[189]  X. Luri,et al.  The Besançon Galaxy model renewed - I. Constraints on the local star formation history from Tycho data , 2014, 1402.3257.

[190]  Gordon A. H. Walker,et al.  A search for substellar companions to solar-type stars , 1988 .

[191]  O. Pejcha,et al.  EXTENDED-SOURCE EFFECT AND CHROMATICITY IN TWO-POINT-MASS MICROLENSING , 2007, 0712.2217.