Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates.

[1]  B. Mordmüller,et al.  Selection of a trioxaquine as an antimalarial drug candidate , 2008, Proceedings of the National Academy of Sciences.

[2]  B. Meunier,et al.  Hybrid molecules with a dual mode of action: dream or reality? , 2008, Accounts of chemical research.

[3]  S. Kappe,et al.  Malaria: progress, perils, and prospects for eradication. , 2008, The Journal of clinical investigation.

[4]  Ruth H. Hughes,et al.  Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. , 2007, Angewandte Chemie.

[5]  J. Karle,et al.  Weak base dispiro-1,2,4-trioxolanes: potent antimalarial ozonides. , 2007, Bioorganic & medicinal chemistry letters.

[6]  J. Lelièvre,et al.  Trioxaquines Are New Antimalarial Agents Active on All Erythrocytic Forms, Including Gametocytes , 2007, Antimicrobial Agents and Chemotherapy.

[7]  J. Chollet,et al.  Effect of functional group polarity on the antimalarial activity of spiro and dispiro-1,2,4-trioxolanes. , 2006, Bioorganic & medicinal chemistry.

[8]  S. Krishna,et al.  Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance , 2006, Trends in molecular medicine.

[9]  B. Meunier,et al.  The key role of heme to trigger the antimalarial activity of trioxanes , 2005 .

[10]  J. Karle,et al.  Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting a workable structure-activity relationship using simple prototypes. , 2005, Journal of medicinal chemistry.

[11]  J. K. Wood,et al.  Dispiro-1,2,4-trioxane analogues of a prototype dispiro-1,2,4-trioxolane: mechanistic comparators for artemisinin in the context of reaction pathways with iron(II). , 2005, The Journal of organic chemistry.

[12]  Richard K. Haynes Prof. Reply to Comments on “Highly Antimalaria-Active Artemisinin Derivatives: Biological Activity Does Not Correlate with Chemical Reactivity” , 2005 .

[13]  Christian Scheurer,et al.  Identification of an antimalarial synthetic trioxolane drug development candidate , 2004, Nature.

[14]  Yuxiang Dong,et al.  Synthetic peroxides as antimalarials , 2004, Medicinal research reviews.

[15]  P. O’Neill,et al.  A medicinal chemistry perspective on artemisinin and related endoperoxides. , 2004, Journal of medicinal chemistry.

[16]  P. O’Neill,et al.  Knowledge of the proposed chemical mechanism of action and cytochrome p450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. , 2004, Accounts of chemical research.

[17]  H. Vial,et al.  Synthesis and antimalarial activity of trioxaquine derivatives. , 2004, Chemistry.

[18]  S. Croft,et al.  Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. , 2004, Angewandte Chemie.

[19]  S. Puri,et al.  Synthesis and antimalarial activity of a new series of trioxaquines. , 2004, Bioorganic & medicinal chemistry.

[20]  Dominic P. Williams,et al.  Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10beta-(2-hydroxyethyl)deoxoartemisinin. , 2004, Journal of medicinal chemistry.

[21]  S. Krishna,et al.  Artemisinins target the SERCA of Plasmodium falciparum , 2003, Nature.

[22]  J. Craig,et al.  Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. , 2003, The Journal of antimicrobial chemotherapy.

[23]  B. Meunier,et al.  From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. , 2002, Accounts of chemical research.

[24]  B. K. Park,et al.  Mechanism-based design of parasite-targeted artemisinin derivatives: synthesis and antimalarial activity of new diamine containing analogues. , 2002, Journal of medicinal chemistry.

[25]  B. K. Park,et al.  Optimisation of the allylsilane approach to C-10 deoxo carba analogues of dihydroartemisinin: synthesis and in vitro antimalarial activity of new, metabolically stable C-10 analogues , 2001 .

[26]  B. Meunier,et al.  In Vitro Activities of DU-1102, a New Trioxaquine Derivative, against Plasmodium falciparum Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[27]  B. Meunier,et al.  Preparation and Antimalarial Activities of “Trioxaquines”, New Modular Molecules with a Trioxane Skeleton Linked to a 4‐Aminoquinoline , 2000, Chembiochem : a European journal of chemical biology.

[28]  R. Snow,et al.  Averting a malaria disaster , 1999, The Lancet.

[29]  N. White,et al.  Antimalarial drug resistance and combination chemotherapy. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  B. K. Park,et al.  Mechanism-based design of parasite-targeted artemisinin derivatives: synthesis and antimalarial activity of benzylamino and alkylamino ether analogues of artemisinin. , 1996, Journal of medicinal chemistry.

[31]  S. Grate,et al.  Fatal neurotoxicity of arteether and artemether. , 1994, The American journal of tropical medicine and hygiene.

[32]  S. Meshnick,et al.  Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu) , 1993, Antimicrobial Agents and Chemotherapy.

[33]  S. Meshnick,et al.  Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. , 1991, Molecular and biochemical parasitology.

[34]  D. L. Klayman,et al.  Qinghaosu (artemisinin): an antimalarial drug from China , 1985 .

[35]  J. Haynes,et al.  Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique , 1979, Antimicrobial Agents and Chemotherapy.

[36]  W. Trager,et al.  Cultivation of malarial parasites , 1978, Nature.