Angle insensitive enhancement of organic solar cells using metallic gratings

We explore the optical enhancement of organic photovoltaic cells by incorporating a metallic grating as the back contact. We numerically demonstrate a strongly enhanced light absorption exploiting a complex interplay between multiple electromagnetic wave phenomena, among which surface plasmon polariton (SPP) resonances, waveguide mode resonances, Fabry–Perot modes, and scattering. We focus on a triangular grating structure and describe the particular opportunities to obtain a good angular performance. In addition we introduce a novel multiperiodic geometry that incorporates multiple types of SPP resonances. Our triangular structure shows an increased absorption of 15.6% with the AM1.5G spectrum in the 300–800 nm wavelength range. For the multiperiodic grating case a significant further increase to 20.7% is shown.

[1]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[2]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[3]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[4]  Yidong Huang,et al.  Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. , 2009, Optics letters.

[5]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[6]  M. J. Lockyear,et al.  Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating , 2003 .

[7]  Bernard Geffroy,et al.  Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances , 2006 .

[8]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[9]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[10]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[11]  M. J. Lockyear,et al.  Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating , 2005 .

[12]  Juhwan Kim,et al.  Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography , 2008 .

[13]  Vincenzo Giannini,et al.  Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas , 2009 .

[14]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[15]  L. Lagae,et al.  Groove-gratings to optimize the electric field enhancement in a plasmonic nanoslit-cavity , 2010 .

[16]  Steven G. Johnson,et al.  Molding the flow of light , 2001, Comput. Sci. Eng..

[17]  Akihiro Furube,et al.  Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies , 2009 .

[18]  E. Hoke,et al.  Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells. , 2009, Nano letters.

[19]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells , 2010 .

[20]  Alberto Salleo,et al.  Light trapping in thin-film silicon solar cells with submicron surface texture. , 2009, Optics express.

[21]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[22]  J. R. Sambles,et al.  Double-period zero-order metal gratings as effective selective absorbers , 2000 .

[23]  Nils-Krister Persson,et al.  Surface plasmon increase absorption in polymer photovoltaic cells , 2007 .

[24]  J. Sambles,et al.  Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating , 2002 .

[25]  Shanhui Fan,et al.  Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range , 2005 .

[26]  D. Ginger,et al.  Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. , 2010, Nano letters.

[27]  Mats Andersson,et al.  Trapping light in polymer photodiodes with soft embossed gratings , 2000 .

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  J. Sambles,et al.  Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  P. Cunningham,et al.  Carrier Dynamics Resulting from Above and Below Gap Excitation of P3HT and P3HT/ PCBM Investigated by Optical-Pump Terahertz-Probe Spectroscopy , 2008 .

[31]  J. R. Sambles,et al.  Dispersion of surface plasmon polaritons on short-pitch metal gratings , 2002 .