Cut finite element methods for coupled bulk–surface problems

We develop a cut finite element method for a second order elliptic coupled bulk-surface model problem. We prove a priori estimates for the energy and $$L^2$$L2 norms of the error. Using stabilization terms we show that the resulting algebraic system of equations has a similar condition number as a standard fitted finite element method. Finally, we present a numerical example illustrating the accuracy and the robustness of our approach.

[1]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[2]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[3]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[4]  M. Siegel,et al.  A hybrid numerical method for interfacial fluid flow with soluble surfactant , 2010, J. Comput. Phys..

[5]  Mats G. Larson,et al.  A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary , 2013, Numerische Mathematik.

[6]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[7]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Maxim A. Olshanskii,et al.  A stabilized finite element method for advection-diffusion equations on surfaces , 2013, 1301.3741.

[10]  A. Friedman Foundations of modern analysis , 1970 .

[11]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[12]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[13]  Jean-Luc Guermond,et al.  Evaluation of the condition number in linear systems arising in finite element approximations , 2006 .

[14]  G. Folland Introduction to Partial Differential Equations , 1976 .

[15]  A. Stuchebrukhov,et al.  Proton transport via the membrane surface. , 2002, Biophysical journal.

[16]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[17]  J. Dieudonné Preface to the Enlarged and Corrected Printing , 1969 .

[18]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[19]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .