Parameter estimation for multiple scattering process on the sphere

This paper considers the problem of parameter estimation for multiple scattering process on the sphere. Using harmonic analysis, a Fourier expansion of the pdf of the process is obtained. Based on the Fourier coefficient statistics, we consider the problem of estimating the parameter of the process using an Approximate Bayesian Computation (ABC) approach. Simulations show the ability of the proposed approach for the density estimation of intensity and concentration parameters for the von Mises Fisher multiple scattering process.

[1]  Florent Chatelain,et al.  Von Mises-Fisher approximation of multiple scattering process on the hypersphere , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[2]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[3]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[4]  Eric Jakeman,et al.  Modeling fluctuations in scattered waves , 2006 .

[5]  Christian Lageman,et al.  Decompounding on Compact Lie Groups , 2010, IEEE Transactions on Information Theory.

[6]  John Couch Adams,et al.  III. On the expression of the product of any two legendre’s coefficients by means of a series of Legendre’s coefficients , 1878, Proceedings of the Royal Society of London.

[7]  B. Friedlander,et al.  Performance analysis of parameter estimation algorithms based on high‐order moments , 1989 .

[8]  N. Le Bihan,et al.  Stochastic description of geometric phase for polarized waves in random media , 2012, 1207.2569.

[9]  L. Zalcman,et al.  Fourier Series and Integrals , 2007 .

[10]  Guosheng Yin,et al.  Bayesian generalized method of moments , 2009 .

[11]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[12]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[13]  Jean-Yves Tourneret,et al.  Parameter Estimation for Multivariate Mixed Poisson Distributions , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[14]  Arnold Zellner,et al.  Bayesian Method of Moments (BMOM) Analysis of Parametric and Semiparametric Regression Models , 1998 .

[15]  Ludovic Margerin,et al.  Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Guillaume Deffuant,et al.  Adaptive approximate Bayesian computation for complex models , 2011, Computational Statistics.

[17]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.