An 8-Mb Phase-Change Random Access Memory Chip Based on a Resistor-on-Via-Stacked-Plug Storage Cell

In this letter, an 8-Mb phase-change random access memory (PCRAM) chip has been developed in a 130-nm 4-ML standard CMOS technology based on a Resistor-on-Via-stacked-Plug (RVP) storage cell structure. This phase-change resistor is formed after CMOS logic fabrication. PCRAM can be embedded without changing any logic device and process. The memory cell selector is implemented by a standard 1.2-V nMOS device. The currents of the set and reset operations are 0.4 and 2.2 mA, respectively. The best endurance is over 1010 cycles.

[1]  S. Ziegler,et al.  Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5 , 2004 .

[2]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[3]  Paolo Mattavelli,et al.  A 4 Mb LV MOS-Selected Embedded Phase Change Memory in 90 nm Standard CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[4]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[5]  Roberto Bez,et al.  Chalcogenide PCM: a memory technology for next decade , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[6]  R. Bez,et al.  Phase-change memory technology for embedded applications , 2004, Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850).

[7]  P. Zuliani,et al.  Phase Change Memory technology for embedded non volatile memory applications for 90nm and beyond , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[8]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[9]  Byung-Gil Choi,et al.  A 0.1-$\mu{\hbox {m}}$ 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) With 66-MHz Synchronous Burst-Read Operation , 2007, IEEE Journal of Solid-State Circuits.

[10]  D. Ielmini,et al.  Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part II: Statistical Analysis and Prediction of Failure Time , 2006, IEEE Transactions on Electron Devices.

[11]  X.Q. Wei,et al.  Universal HSPICE model for chalcogenide based phase change memory elements , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference.

[12]  Michael A. Paesler,et al.  Microscopic local bonding and optically-induced switching for Ge2Sb2Te5 alloys: A tale of four pseudo-binary and three binary tie-lines in Ge-Sb-Te phase field , 2009 .

[13]  Tahone Yang,et al.  A Multi-Layer Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory , 2006, 2006 International Electron Devices Meeting.

[14]  N. Righos,et al.  A stackable cross point Phase Change Memory , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).