Quantum Network via Partial Entangled State

In this article we designed a quantum network consists of four nodes using pairs of partial entangled state (Werner-state). The nodes of this network are connected via Dzyaloshiniskii-Moriya (DM) interaction. The entanglement is quantified between all different nodes using Wootters concurrence. It is shown that there is a maximum entangled state generated between two nodes which are connected indirectly. The degree of entanglement depends on the direction of switching the interaction. Index Terms—Entanglement, quantum network, dzyaloshiniskii-Moriya (DM) interaction, Entangled State

[1]  Guo‐Feng Zhang,et al.  Entanglement in a three-qubit anisotropic Heisenberg XXZ spin ring with Dzyaloshinskii–Moriya interaction , 2009 .

[2]  H. Mokhtari,et al.  Long-distance entanglement generation by local rotational protocols in spin chains , 2012, 1210.7245.

[3]  Satyabrata Adhikari,et al.  Teleportation via maximally and non-maximally entangled mixed states , 2010, Quantum Inf. Comput..

[4]  N. Metwally Entangled network and quantum communication , 2011, 1106.1261.

[5]  Mohammad Reza Pourkarimi,et al.  Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain , 2012, 1211.5907.

[6]  Fariel Shafee,et al.  Information in entangled dynamic quantum networks , 2006, Microelectron. J..

[7]  N. Metwally,et al.  Dynamics of Information Coded in a Single Cooper Pair Box , 2013 .

[8]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[9]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[10]  Preservation of entanglement in a two-qubit-spin coupled system , 2011, 1108.4981.

[11]  N. Vitanov,et al.  Simple implementation of a quantum search with trapped ions , 2008, 0909.5401.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[15]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[16]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[17]  H. Song,et al.  Entanglement and teleportation through a two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction , 2010 .

[18]  N. Metwally Information Loss in Local Dissipation Environments , 2009, 0901.4410.

[19]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[20]  Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii-Moriya interaction , 2010, 1012.2788.

[21]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[22]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  Zhi Qi-jun,et al.  Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii–Moriya interaction , 2009 .

[24]  Y. Hassouni,et al.  Asymptotic dynamics of quantum discord in open quantum systems , 2011 .

[25]  Xiaoting Wang,et al.  Entanglement generation between distant atoms by Lyapunov control , 2009, 0906.1830.

[26]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[27]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[28]  M. Abdel-Aty Quantum information entropy and multi-qubit entanglement , 2007 .

[29]  Nordin Zakaria,et al.  Effect of the Spin-Orbit Interaction on Partial Entangled Quantum Network , 2013, DaEng.

[30]  N. Metwally Quantum dense coding and dynamics of information over Bloch channels , 2011 .

[31]  G. J. Lapeyre,et al.  Multipartite entanglement percolation , 2009, 0910.2438.

[32]  M. Katsnelson,et al.  Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet , 2014, Nature Physics.