A new method for similarity and anomaly detection in cryptocurrency markets

We propose a new approach using the MJ1 semi-metric, from the more general MJp class of semi-metrics [1], to detect similarity and anomalies in collections of cryptocurrencies. Since change points are signals of potential risk, we apply this metric to measure distance between change point sets, with respect to returns and variance. Such change point sets can be identified using algorithms such as the Mann-Whitney test, while the distance matrix is analysed using three approaches to detect similarity and identify clusters of similar cryptocurrencies. This aims to avoid constructing portfolios with highly similar behaviours, reducing total portfolio risk.

[1]  Douglas M. Hawkins,et al.  Statistical Process Control for Shifts in Mean or Variance Using a Changepoint Formulation , 2005, Technometrics.

[2]  C. S. Kubrusly,et al.  Distance Between Sets - A survey , 2018, 1808.02574.

[3]  Gordon J. Ross Parametric and Nonparametric Sequential Change Detection in R: The cpm package , 2012 .

[4]  Paraskevi Katsiampa Volatility estimation for Bitcoin: A comparison of GARCH models , 2017 .

[5]  Niall M. Adams,et al.  Two Nonparametric Control Charts for Detecting Arbitrary Distribution Changes , 2012 .

[6]  A. N. PETTrrr A Non-parametric Approach to the Change-point Problem , 1979 .

[7]  Gershon Elber,et al.  Precise Hausdorff distance computation between polygonal meshes , 2010, Comput. Aided Geom. Des..

[8]  Celso C. Ribeiro,et al.  Computing some distance functions between polygons , 1991, Pattern Recognit..

[9]  Daphna Weinshall,et al.  Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  William Rucklidge,et al.  Efficient Visual Recognition Using the Hausdorff Distance , 1996, Lecture Notes in Computer Science.

[11]  Dimitris K. Tasoulis,et al.  Sequential monitoring of a Bernoulli sequence when the pre-change parameter is unknown , 2012, Comput. Stat..

[12]  Douglas M. Hawkins,et al.  A Nonparametric Change-Point Control Chart , 2010 .

[13]  A. Baddeley Errors in binary images and an $Lsp p$ version of the Hausdorff metric , 1992 .

[14]  Nick James,et al.  Novel semi-metrics for multivariate change point analysis and anomaly detection , 2019, Physica D: Nonlinear Phenomena.

[15]  Douglas M. Hawkins,et al.  A Change-Point Model for a Shift in Variance , 2005 .

[16]  Shelton Peiris,et al.  On long memory effects in the volatility measure of Cryptocurrencies , 2019 .

[17]  S. Nadarajah,et al.  GARCH Modelling of Cryptocurrencies , 2017 .

[18]  Dimitris K. Tasoulis,et al.  Nonparametric Monitoring of Data Streams for Changes in Location and Scale , 2011, Technometrics.