Maximally efficient prediction in the early fly visual system may support evasive flight maneuvers

The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly’s future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior. Author summary Survival-critical behaviors shape neural circuits to translate sensory information into strikingly fast predictions, e.g. in escaping from a predator faster than the system’s processing delay. We show that the fly visual system implements fast and accurate prediction of its visual experience. This provides crucial information for directing fast evasive maneuvers that unfold over just 40ms. Our work shows how this fast prediction is implemented, mechanistically, and suggests the existence of a novel sensory-motor pathway from the fly visual system to a wing steering motor neuron. Echoing and amplifying previous work in the retina, our work hypothesizes that the efficient encoding of predictive information is a universal design principle supporting fast, natural behaviors.

[1]  Alexander Borst,et al.  Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly , 2005, Journal of Comparative Physiology A.

[2]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[4]  B. Connors Synchrony and so much more: Diverse roles for electrical synapses in neural circuits , 2017, Developmental neurobiology.

[5]  Alexander Borst,et al.  How fly neurons compute the direction of visual motion , 2019, Journal of Comparative Physiology A.

[6]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[7]  D. Smith,et al.  The fine structure of haltere sensilla in the blowfly Calliphora erythrocephala (Meig.), with scanning electron microscopic observations on the haltere surface. , 1969, Tissue & cell.

[8]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[9]  Alexander Borst,et al.  Local motion detectors are required for the computation of expansion flow-fields , 2015, Biology Open.

[10]  Michael H. Dickinson,et al.  Flies Evade Looming Targets by Executing Rapid Visually Directed Banked Turns , 2014, Science.

[11]  A. Borst,et al.  Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network , 2011, PloS one.

[12]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[14]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[15]  Nicholas J. Strausfeld,et al.  Descending pathways connecting the male-specific visual system of flies to the neck and flight motor , 1991, Journal of Comparative Physiology A.

[16]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[17]  Siwei Wang,et al.  Efficient encoding of motion is mediated by gap junctions in the fly visual system , 2017, PLoS Comput. Biol..

[18]  Alexander Borst,et al.  Reciprocal Inhibitory Connections Within a Neural Network for Rotational Optic-Flow Processing , 2007, Front. Neurosci..

[19]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[20]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[21]  D. Grimaldi,et al.  Haltere morphology and campaniform sensilla arrangement across Diptera. , 2017, Arthropod structure & development.

[22]  Michael Dickinson,et al.  The Function and Organization of the Motor System Controlling Flight Maneuvers in Flies , 2017, Current Biology.

[23]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[24]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[25]  K. Catania Tentacled snakes turn C-starts to their advantage and predict future prey behavior , 2009, Proceedings of the National Academy of Sciences.

[26]  James E. Fitzgerald,et al.  Nonlinear circuits for naturalistic visual motion estimation , 2015, eLife.

[27]  A. Borst,et al.  Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.

[28]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[29]  Samuel T Fabian,et al.  Interception by two predatory fly species is explained by a proportional navigation feedback controller , 2018, Journal of The Royal Society Interface.

[30]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[31]  Greg Wayne,et al.  A temporal basis for predicting the sensory consequences of motor commands in an electric fish , 2014, Nature Neuroscience.

[32]  M. Dickinson,et al.  Position‐specific central projections of mechanosensory neurons on the haltere of the blow fly, Calliphora vicina , 1996, The Journal of comparative neurology.

[33]  Olivier Marre,et al.  Relevant sparse codes with variational information bottleneck , 2016, NIPS.

[34]  W. Buddenbrock Die vermutliche Lösung der Halterenfrage , 1919, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[35]  W. Gronenberg,et al.  Premotor descending neurons responding selectively to local visual stimuli in flies , 1992, The Journal of comparative neurology.

[36]  Joshua W. Shaevitz,et al.  Predictability and hierarchy in Drosophila behavior , 2016, Proceedings of the National Academy of Sciences.

[37]  Samuel R. Carroll,et al.  Near-Optimal Decoding of Transient Stimuli from Coupled Neuronal Subpopulations , 2014, The Journal of Neuroscience.

[38]  N. Strausfeld,et al.  The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica , 1985, Cell and Tissue Research.

[39]  Michael H Dickinson,et al.  Death Valley, Drosophila, and the Devonian toolkit. , 2014, Annual review of entomology.

[40]  Z. J. Wang,et al.  Fruit flies modulate passive wing pitching to generate in-flight turns. , 2009, Physical review letters.

[41]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[42]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[43]  R. Hengstenberg Mechanosensory control of compensatory head roll during flight in the blowflyCalliphora erythrocephala Meig. , 1988, Journal of Comparative Physiology A.

[44]  David J Heeger,et al.  Theory of cortical function , 2017, Proceedings of the National Academy of Sciences.

[45]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[46]  Michael H Dickinson,et al.  The aerodynamics and control of free flight manoeuvres in Drosophila , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[48]  M. S. Tu,et al.  The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina) , 1996, Journal of Comparative Physiology A.

[49]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[50]  Michael J. Berry,et al.  Predictive information in a sensory population , 2013, Proceedings of the National Academy of Sciences.

[51]  Alexei Kurakin,et al.  The self-organizing fractal theory as a universal discovery method: the phenomenon of life , 2011, Theoretical Biology and Medical Modelling.

[52]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[53]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[54]  Stephanie E Palmer,et al.  Learning to make external sensory stimulus predictions using internal correlations in populations of neurons , 2017, Proceedings of the National Academy of Sciences.

[55]  Michael H. Dickinson,et al.  Body saccades of Drosophila consist of stereotyped banked turns , 2015, The Journal of Experimental Biology.

[56]  John Guckenheimer,et al.  Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles , 2010, Proceedings of the National Academy of Sciences.

[57]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[58]  Damon A. Clark,et al.  Parallel Computations in Insect and Mammalian Visual Motion Processing , 2016, Current Biology.

[59]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[60]  Michael H. Dickinson,et al.  Flies Regulate Wing Motion via Active Control of a Dual-Function Gyroscope , 2019, Current Biology.

[61]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[62]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[63]  N. J. Strausfeld,et al.  The neck motor system of the flyCalliphora erythrocephala , 2004, Journal of Comparative Physiology.

[64]  M. Dickinson,et al.  An Integrative Model of Insect Flight Control (Invited) , 2006 .

[65]  F. Lehmann,et al.  The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). , 1998, The Journal of experimental biology.

[66]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[67]  Zachary F. Jessen,et al.  A Self-Regulating Gap Junction Network of Amacrine Cells Controls Nitric Oxide Release in the Retina , 2018, Neuron.

[68]  N. J. Strausfeld,et al.  Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.

[69]  E. Marder Electrical synapses: Beyond speed and synchrony to computation , 1998, Current Biology.

[70]  A. Borst,et al.  Eigenanalysis of a neural network for optic flow processing , 2008 .

[71]  K. Götz,et al.  Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. , 1996, The Journal of experimental biology.

[72]  Y. Toh Structure of campaniform sensilla on the haltere ofDrosophila prepared by cryofixation , 1985 .

[73]  Michael B. Reiser,et al.  Ultra-selective looming detection from radial motion opponency , 2017, Nature.

[74]  E.J. Chichilnisky,et al.  Cone photoreceptor contributions to noise and correlations in the retinal output , 2011, Nature Neuroscience.

[75]  K. Götz,et al.  Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster , 1996, Journal of Comparative Physiology A.

[76]  N. Strausfeld,et al.  Anatomical organization of retinotopic motion‐sensitive pathways in the optic lobes of flies , 2003, Microscopy research and technique.

[77]  M. Dickinson,et al.  Summation of visual and mechanosensory feedback in Drosophila flight control , 2004, Journal of Experimental Biology.

[78]  Idan Segev,et al.  Optimization principles of dendritic structure , 2007, Theoretical Biology and Medical Modelling.

[79]  N. Strausfeld,et al.  The relevance of neural architecture to visual performance: Phylogenetic conservation and variation in dipteran visual systems , 1997 .

[80]  R. Chevalier The fine structure of campaniform sensilla on the halteres of Drosophila melanogaster , 1969 .

[81]  U. Grünert,et al.  Campaniform sensilla of Calliphora vicina (Insecta, Diptera) , 1987, Zoomorphology.

[82]  H. López-Schier Neuroplasticity in the acoustic startle reflex in larval zebrafish , 2019, Current Opinion in Neurobiology.

[83]  N. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .

[84]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[85]  Alexander Borst,et al.  Preserving Neural Function under Extreme Scaling , 2013, PloS one.

[86]  V. Balasubramanian,et al.  Lag normalization in an electrically coupled neural network , 2013, Nature Neuroscience.