High temperature deformation of V-1.6Y-8.5W-(0.08, 0.15)C alloys

[1]  H. Matsui,et al.  Effect of 2 wt% Ti addition on high-temperature strength of fine-grained, particle dispersed V–Y alloys , 2007 .

[2]  J. Pelleg,et al.  Vanadium diffusion in V–W alloys , 2007 .

[3]  H. Matsui,et al.  High Temperature Deformation of a Fine-Grained and Particle-Dispersed V-2.3%Y-4%Ti-3%Mo Alloy , 2006 .

[4]  H. Kurishita,et al.  Development of ultra-fine grained V–W–Y alloys with superior mechanical properties by effective usage of WC debris introduced during mechanical alloying , 2006 .

[5]  H. Kurishita,et al.  Development of an ultra-fine grained V–1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength , 2006 .

[6]  H. Kurishita,et al.  Microstructural control to improve the resistance to radiation embrittlement in vanadium , 2005 .

[7]  H. Matsui,et al.  High temperature strength of fine-grained, particle-dispersed V–(1.7–2.4)wt%Y alloys with different grain sizes and particle densities , 2004 .

[8]  G. R. Odette,et al.  Recent progress on development of vanadium alloys for fusion , 2004 .

[9]  Steven J. Zinkle,et al.  Vanadium alloys: overview and recent results , 2002 .

[10]  Steven J. Zinkle,et al.  Overview of materials research for fusion reactors , 2002 .

[11]  Takeo Muroga,et al.  NIFS program for large ingot production of a V–Cr–Ti alloy , 2000 .

[12]  H. Kurishita,et al.  Microstructure control to improve mechanical properties of vanadium alloys for fusion applications , 2000 .

[13]  C. McHargue,et al.  Self-diffusion in body-centered cubic titanium-vanadium alloys☆ , 1968 .