Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures.

Sensor miniaturization together with broadening temperature sensing range are fundamental challenges in nanothermometry. By exploiting a large temperature-dependent screening effect observed in a resonant tunneling diode in sequence with a GaInNAs/GaAs quantum well, we present a low dimensional, wide range, and high sensitive nanothermometer. This sensor shows a large threshold voltage shift of the bistable switching of more than 4.5 V for a temperature raise from 4.5 to 295 K, with a linear voltage-temperature response of 19.2 mV K(-1), and a temperature uncertainty in the millikelvin (mK) range. Also, when we monitor the electroluminescence emission spectrum, an optical read-out control of the thermometer is provided. The combination of electrical and optical read-outs together with the sensor architecture excel the device as a thermometer with the capability of noninvasive temperature sensing, high local resolution, and sensitivity.

[1]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[2]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[3]  M. Büttiker Coherent and sequential tunneling in series barriers , 1988 .

[4]  Joel N. Schulman,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[5]  M. Pate,et al.  The observation of electroluminescence in a GaAs(AlGa)As double barrier resonant tunnelling structure , 1990 .

[6]  Cho,et al.  Temperature dependence of the resonant-tunneling process in a double-barrier diode. , 1991, Physical review. B, Condensed matter.

[7]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: Hiroshi Mizuta and Tomonori Tanoue , 1995 .

[8]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: High-speed and functional applications of resonant tunnelling diodes , 1995 .

[9]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: Introduction , 1995 .

[10]  H.J. De Los Santos,et al.  Physics-based RTD current-voltage equation , 1996, IEEE Electron Device Letters.

[11]  P. Childs,et al.  Review of temperature measurement , 2000 .

[12]  R. Schoelkopf,et al.  Primary Electronic Thermometry Using the Shot Noise of a Tunnel Junction , 2003, Science.

[13]  M. Henini,et al.  Electric-field inversion asymmetry: Rashba and Stark effects for holes in resonant tunneling devices , 2006, cond-mat/0601421.

[14]  Junqing Hu,et al.  A novel method for practical temperature measurement with carbon nanotube nanothermometers , 2006 .

[15]  Arttu Luukanen,et al.  Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications , 2005, cond-mat/0508093.

[16]  Hiroshi Iwai,et al.  On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors , 2006 .

[17]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[18]  Arun Majumdar,et al.  Nanostructuring expands thermal limits , 2007 .

[19]  Heng Huang,et al.  Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. , 2010, Nature nanotechnology.

[20]  S. Sadat,et al.  Nanoscale thermometry using point contact thermocouples. , 2010, Nano letters.

[21]  Sven Höfling,et al.  GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing , 2012 .

[22]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[23]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[24]  P. Kim,et al.  Development of high frequency and wide bandwidth Johnson noise thermometry , 2014, 1411.4596.

[25]  L. Carlos,et al.  Lanthanide–Organic Framework Nanothermometers Prepared by Spray‐Drying , 2015 .

[26]  R. Piñol,et al.  Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties. , 2015, ACS nano.

[27]  E. R. White,et al.  Nanoscale temperature mapping in operating microelectronic devices , 2015, Science.