Evolution in the bias of faint radio sources to z 2.2

Quantifying how the baryonic matter traces the underlying dark matter distribution is key to both understanding galaxy formation and our ability to constrain the cosmological model. Using the cross-correlation function of radio and near-inf rared galaxies, we present a largescale clustering analysis of radio galaxies to z � 2.2. We measure the angular auto-correlation function of Ks 90 µJy to infer linear bias of radio galaxies in four redshift bins. We find that the bias evolves from b = 0.57 ± 0.06 at z � 0.3 to 8.55 ± 3.11 at z � 2.2. Furthermore, we separate the radio sources into subsamples to determine how the bias is dependent on the radio luminosity, and find a bias which is significantly higher than predicted by the simulations of Wilman et al., and consistent with the lower luminosity but more abundant FR-I population having a similar bias to the highly luminous but rare FR-IIs. Our results are suggestive of a higher mass, particularly for FR-I sources than assumed in simulations, especially towards higher redshift.

[1]  A. Hopkins,et al.  Galaxy and Mass Assembly: the evolution of bias in the radio source population to z ∼ 1.5 , 2014, 1402.5654.

[2]  Y. Mellier,et al.  The WIRCam Deep Survey - II. Mass selected clustering , 2013, 1310.2172.

[3]  M. Jarvis,et al.  Evolution of faint radio sources in the VIDEO-XMM3 field , 2013, 1309.0358.

[4]  J. Dunlop,et al.  A PUBLIC Ks-SELECTED CATALOG IN THE COSMOS/UltraVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS, , 2013, 1303.4410.

[5]  C. Conselice,et al.  Studying the emergence of the red sequence through galaxy clustering: host halo masses at z > 2 , 2013, 1303.0816.

[6]  M. Sullivan,et al.  The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.

[7]  Ray P. Norris,et al.  Impact of redshift information on cosmological applications with next-generation radio surveys , 2012, 1205.1048.

[8]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[9]  Daniel J. B. Smith,et al.  The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes , 2012, 1202.1958.

[10]  N. Clerc,et al.  Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field , 2011, 1111.5982.

[11]  Robert C. Nichol,et al.  Cosmological Measurements with Forthcoming Radio Continuum Surveys , 2011, 1108.0930.

[12]  I. P'erez-Fournon,et al.  HerMES: detection of cosmic magnification of submillimetre galaxies using angular cross-correlation , 2011, 1101.4796.

[13]  K. Shimasaku,et al.  THE MASS-DEPENDENT CLUSTERING HISTORY OF K-SELECTED GALAXIES AT z < 4 IN THE SXDS/UDS FIELD , 2011, 1101.1566.

[14]  W. Saslaw,et al.  THE GALAXY COUNTS-IN-CELLS DISTRIBUTION FROM THE SLOAN DIGITAL SKY SURVEY , 2010, 1009.0013.

[15]  S. Bamford,et al.  Which haloes host Herschel-ATLAS galaxies in the local Universe? , 2010, 1011.3048.

[16]  Edinburgh,et al.  The evolution of the Fundamental Plane of radio galaxies from z similar to 0.5 to the present day , 2010, 1008.2344.

[17]  John P. Stott,et al.  Clustering properties of high redshift red galaxies in SA22 from the UKIDSS DXS , 2010, 1007.5154.

[18]  M. Jarvis,et al.  An infrared–radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel , 2010, 1002.1112.

[19]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[20]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[21]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[22]  S. Matarrese,et al.  A reassessment of the evidence of the Integrated Sachs–Wolfe effect through the WMAP–NVSS correlation , 2008, 0802.0084.

[23]  Adam D. Myers,et al.  Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.

[24]  R. Somerville,et al.  Clustering of Lyα Emitters at z ≈ 4.5 , 2007, 0706.0893.

[25]  Jason D. McEwen,et al.  Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets , 2007 .

[26]  Alexander S. Szalay,et al.  The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .

[27]  Tetsuo Nishimura,et al.  MOIRCS Deep Survey. II. Clustering Properties of K-Band Selected Galaxies in GOODS-North Region , 2007, astro-ph/0701820.

[28]  E. Gawiser,et al.  Clustering of K-selected Galaxies at 2 < z < 3.5: Evidence for a Color-Density Relation , 2006, astro-ph/0606330.

[29]  R. Nichol,et al.  The shape of the SDSS DR5 galaxy power spectrum , 2006, astro-ph/0608636.

[30]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[31]  A. Myers,et al.  Detection of Cosmic Magnification with the Sloan Digital Sky Survey , 2005, astro-ph/0504510.

[32]  S. Rawlings,et al.  The three-dimensional clustering of radio galaxies in the Texas—Oxford NVSS structure survey , 2005 .

[33]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[34]  Porto,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.

[35]  Uros Seljak Michael S. Warren Large‐scale bias and stochasticity of haloes and dark matter , 2004, astro-ph/0403698.

[36]  C. Blake,et al.  Angular clustering in the Sydney University Molonglo Sky Survey , 2004 .

[37]  O. Lahav,et al.  The 2dF galaxy redshift survey: clustering properties of radio galaxies , 2003, astro-ph/0312160.

[38]  C. Blake,et al.  Angular clustering in the SUMSS radio survey , 2003, astro-ph/0310115.

[39]  H. Rottgering,et al.  The spatial clustering of radio sources in NVSS and FIRST; implications for galaxy clustering evolution , 2003, astro-ph/0304160.

[40]  B. Garilli,et al.  The VLA-VIRMOS Deep Field I. Radio observations probing the microJy source population , 2003, astro-ph/0303364.

[41]  H. Rottgering,et al.  The clustering of sub-mJy radio sources in the Bootes Deep Field , 2002, astro-ph/0210679.

[42]  J. Dunlop,et al.  Quasars, their host galaxies and their central black holes , 2001, astro-ph/0108397.

[43]  C. Blake,et al.  Quantifying angular clustering in wide-area radio surveys , 2002, astro-ph/0208350.

[44]  W. Cotton,et al.  Radio Sources and Star Formation in the Local Universe , 2002 .

[45]  C. Blake,et al.  Measurement of the angular correlation function of radio galaxies from the NRAO VLA Sky Survey , 2001, astro-ph/0111328.

[46]  S. Rawlings,et al.  A sample of 6C radio sources designed to find objects at redshift z>4– III. Imaging and the radio galaxy K–z relation , 2001, astro-ph/0106130.

[47]  D. Bock,et al.  SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science Goals, Survey Design, and Instrumentation , 1998, astro-ph/9812083.

[48]  O. Lahav,et al.  Constraints on the Clustering, Biasing and Redshift Distribution of Radio Sources , 1998, astro-ph/9806342.

[49]  N. Roche,et al.  The angular correlation function and hierarchical moments of ∼70 000 faint galaxies to R=23.5 , 1998, astro-ph/9803331.

[50]  Ofer Lahav,et al.  Variance and skewness in the FIRST survey , 1998 .

[51]  M. Bremer,et al.  Observational Cosmology with the New Radio Surveys , 1998 .

[52]  H. Rottgering,et al.  The Westerbork Northern Sky Survey (WENSS) I. A 570 square degree Mini-Survey around the North Ecliptic Pole ? , 1997 .

[53]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[54]  R. Becker,et al.  The Angular Two-Point Correlation Function for the FIRST Radio Survey , 1995, astro-ph/9606176.

[55]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[56]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[57]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[58]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[59]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[60]  M. Persic,et al.  Constraints on large-scale clustering from the autocorrelation properties of the X-ray background , 1990 .

[61]  C. Frenk,et al.  Uncertainties in the cluster-cluster correlation function. , 1986 .

[62]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[63]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[64]  Neta A. Bahcall,et al.  The Spatial correlation function of RICH clusters of galaxies , 1983 .

[65]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .