Numerical solution of the Falkner-Skan equation based on quasilinearization

We present two iterative methods for solving the Falkner-Skan equation based on the quasilinearization method. We formulate the original problem as a new free boundary value problem. The truncated boundary depending on a small parameter is an unknown free boundary and has to be determined as part of solution. Using a change of variables, the free boundary value problem is transformed to a problem defined on [0,1]. We apply the quasilinearization method to solve the resulting nonlinear problem. Then we propose two different iterative algorithms by means of a cubic spline solver. Numerical results for various instances are compared with those reported previously in the literature. The comparisons show the accuracy, robustness and efficiency of the presented methodology.

[1]  Riccardo Fazio,et al.  A Novel Approach to the Numerical Solution of Boundary Value Problems on Infinite Intervals , 1996 .

[2]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[3]  I. A. Hassanien,et al.  Chebyshev solution of laminar boundary layer flow , 1990 .

[4]  Asai Asaithambi,et al.  A finite-difference method for the Falkner-Skan equation , 1998, Appl. Math. Comput..

[5]  V. M. F. B.Sc.,et al.  LXXXV. Solutions of the boundary-layer equations , 1931 .

[6]  Arthur Veldman,et al.  Branching of the Falkner-Skan solutions for λ<0 , 1982 .

[7]  A. Salama,et al.  HIGHER-ORDER METHOD FOR SOLVING FREE BOUNDARY-VALUE PROBLEMS , 2004 .

[8]  Elsayed M. E. Elbarbary Chebyshev finite difference method for the solution of boundary-layer equations , 2005, Appl. Math. Comput..

[9]  Chein-Shan Liu,et al.  The Lie-group shooting method for multiple-solutions of Falkner–Skan equation under suction–injection conditions , 2008 .

[10]  Asai Asaithambi Numerical solution of the Falkner-Skan equation using piecewise linear functions , 2004, Appl. Math. Comput..

[11]  P. M. Beckett Finite difference solutions of boundary-layer type equations , 1983 .

[12]  H. B. Keller,et al.  Shooting and parallel shooting methods for solving the Falkner-Skan boundary-layer equation , 1971 .

[13]  G. C. Yang New results of Falkner-Skan equation arising in boundary layer theory , 2008, Appl. Math. Comput..

[14]  Nasser S. Elgazery,et al.  Numerical solution for the Falkner–Skan equation , 2008 .

[15]  Chein-Shan Liu,et al.  The Lie-group shooting method for boundary layer equations in fluid mechanics , 2006 .

[16]  W. D. Hoskins,et al.  Cubic spline solutions to two-point boundary value problems , 1969, Comput. J..

[17]  N. S. Asaithambi,et al.  A numerical method for the solution of the Falkner-Skan equation , 1997 .

[18]  Astronomy,et al.  Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs , 2001, physics/0102041.

[19]  S. Liao A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate , 1999, Journal of Fluid Mechanics.

[20]  K. Pohlhausen,et al.  Zur näherungsweisen Integration der Differentialgleichung der Iaminaren Grenzschicht , 1921 .

[21]  B.-L. Kuo,et al.  Application of the differential transformation method to the solutions of Falkner-Skan wedge flow , 2003 .

[22]  Arthur Veldman,et al.  On a Generalized Falkner-Skan Equation, , 1980 .

[23]  D. R. Hartree,et al.  On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  A. Yakhot,et al.  New Approach to Solution of the Falkner-Skan Equation , 2001 .

[25]  Shijun Liao,et al.  A non‐iterative numerical approach for two‐dimensional viscous flow problems governed by the Falker–Skan equation , 2001 .

[26]  Riccardo Fazio,et al.  The Blasius problem formulated as a free boundary value problem , 1992 .

[27]  Lei Wang A new algorithm for solving classical Blasius equation , 2004, Appl. Math. Comput..

[28]  Offer Pade,et al.  On the solution of Falkner–Skan equations , 2003 .

[29]  Karl Hiemenz,et al.  Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder , 1911 .

[30]  Asai Asaithambi,et al.  Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients , 2005 .

[31]  Asai Asaithambi,et al.  A second-order finite-difference method for the Falkner-Skan equation , 2004, Appl. Math. Comput..

[32]  Hermann Weyl,et al.  On the differential equations of the simplest boundary-layer problems , 1942 .

[33]  Riccardo Fazio,et al.  The falkneer-skan equation: Numerical solutions within group invariance theory , 1994 .

[34]  W. A. Coppel On a differential equation of boundary-layer theory , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.