Numerical solution of the Falkner-Skan equation based on quasilinearization
暂无分享,去创建一个
[1] Riccardo Fazio,et al. A Novel Approach to the Numerical Solution of Boundary Value Problems on Infinite Intervals , 1996 .
[2] H. Blasius. Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .
[3] I. A. Hassanien,et al. Chebyshev solution of laminar boundary layer flow , 1990 .
[4] Asai Asaithambi,et al. A finite-difference method for the Falkner-Skan equation , 1998, Appl. Math. Comput..
[5] V. M. F. B.Sc.,et al. LXXXV. Solutions of the boundary-layer equations , 1931 .
[6] Arthur Veldman,et al. Branching of the Falkner-Skan solutions for λ<0 , 1982 .
[7] A. Salama,et al. HIGHER-ORDER METHOD FOR SOLVING FREE BOUNDARY-VALUE PROBLEMS , 2004 .
[8] Elsayed M. E. Elbarbary. Chebyshev finite difference method for the solution of boundary-layer equations , 2005, Appl. Math. Comput..
[9] Chein-Shan Liu,et al. The Lie-group shooting method for multiple-solutions of Falkner–Skan equation under suction–injection conditions , 2008 .
[10] Asai Asaithambi. Numerical solution of the Falkner-Skan equation using piecewise linear functions , 2004, Appl. Math. Comput..
[11] P. M. Beckett. Finite difference solutions of boundary-layer type equations , 1983 .
[12] H. B. Keller,et al. Shooting and parallel shooting methods for solving the Falkner-Skan boundary-layer equation , 1971 .
[13] G. C. Yang. New results of Falkner-Skan equation arising in boundary layer theory , 2008, Appl. Math. Comput..
[14] Nasser S. Elgazery,et al. Numerical solution for the Falkner–Skan equation , 2008 .
[15] Chein-Shan Liu,et al. The Lie-group shooting method for boundary layer equations in fluid mechanics , 2006 .
[16] W. D. Hoskins,et al. Cubic spline solutions to two-point boundary value problems , 1969, Comput. J..
[17] N. S. Asaithambi,et al. A numerical method for the solution of the Falkner-Skan equation , 1997 .
[18] Astronomy,et al. Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs , 2001, physics/0102041.
[19] S. Liao. A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate , 1999, Journal of Fluid Mechanics.
[20] K. Pohlhausen,et al. Zur näherungsweisen Integration der Differentialgleichung der Iaminaren Grenzschicht , 1921 .
[21] B.-L. Kuo,et al. Application of the differential transformation method to the solutions of Falkner-Skan wedge flow , 2003 .
[22] Arthur Veldman,et al. On a Generalized Falkner-Skan Equation, , 1980 .
[23] D. R. Hartree,et al. On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.
[24] A. Yakhot,et al. New Approach to Solution of the Falkner-Skan Equation , 2001 .
[25] Shijun Liao,et al. A non‐iterative numerical approach for two‐dimensional viscous flow problems governed by the Falker–Skan equation , 2001 .
[26] Riccardo Fazio,et al. The Blasius problem formulated as a free boundary value problem , 1992 .
[27] Lei Wang. A new algorithm for solving classical Blasius equation , 2004, Appl. Math. Comput..
[28] Offer Pade,et al. On the solution of Falkner–Skan equations , 2003 .
[29] Karl Hiemenz,et al. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder , 1911 .
[30] Asai Asaithambi,et al. Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients , 2005 .
[31] Asai Asaithambi,et al. A second-order finite-difference method for the Falkner-Skan equation , 2004, Appl. Math. Comput..
[32] Hermann Weyl,et al. On the differential equations of the simplest boundary-layer problems , 1942 .
[33] Riccardo Fazio,et al. The falkneer-skan equation: Numerical solutions within group invariance theory , 1994 .
[34] W. A. Coppel. On a differential equation of boundary-layer theory , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.