Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case

The present work is concerned with the efficient time integration of nonlinear evolution equations by exponential operator splitting methods. Defect-based local error estimators serving as a reliable basis for adaptive stepsize control are constructed and analyzed. In the context of time-dependent nonlinear Schrodinger equations, asymptotical correctness of the local error estimators associated with the first-order Lie-Trotter and second-order Strang splitting methods is proven. Numerical examples confirm the theoretical results and illustrate the performance of adaptive stepsize control.

[1]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[2]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .

[3]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[4]  Jie Shen,et al.  A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..

[6]  Mechthild Thalhammer,et al.  Convergence analysis of high-order time-splitting pseudo-spectral methods for rotational Gross–Pitaevskii equations , 2014, Numerische Mathematik.

[7]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[8]  Mechthild Thalhammer,et al.  Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics , 2013 .

[9]  Mechthild Thalhammer,et al.  Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems , 2014, J. Comput. Appl. Math..

[10]  Mechthild Thalhammer,et al.  Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..

[11]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[12]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[13]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[14]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[15]  Mechthild Thalhammer,et al.  The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime , 2013 .

[16]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[17]  Mechthild Thalhammer,et al.  Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..

[18]  Othmar Koch,et al.  Variational-splitting time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics , 2011 .

[19]  W. Auzinger,et al.  Local error structures and order conditions in terms of Lie elements for exponential splitting schemes , 2014 .

[20]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.