Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case
暂无分享,去创建一个
Mechthild Thalhammer | Winfried Auzinger | Othmar Koch | Harald Hofstätter | W. Auzinger | O. Koch | M. Thalhammer | H. Hofstätter
[1] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[2] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .
[3] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[4] Jie Shen,et al. A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..
[6] Mechthild Thalhammer,et al. Convergence analysis of high-order time-splitting pseudo-spectral methods for rotational Gross–Pitaevskii equations , 2014, Numerische Mathematik.
[7] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[8] Mechthild Thalhammer,et al. Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics , 2013 .
[9] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems , 2014, J. Comput. Appl. Math..
[10] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..
[11] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[12] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[13] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[14] W. Bao,et al. Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.
[15] Mechthild Thalhammer,et al. The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime , 2013 .
[16] A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .
[17] Mechthild Thalhammer,et al. Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..
[18] Othmar Koch,et al. Variational-splitting time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics , 2011 .
[19] W. Auzinger,et al. Local error structures and order conditions in terms of Lie elements for exponential splitting schemes , 2014 .
[20] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.