Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk

H. Ullum | T. Werge | H. Hakonarson | J. Haines | M. Pericak-Vance | A. Ziegler | M. Ban | A. Goris | S. Sawcer | A. Compston | P. D. de Bakker | L. Bernardinelli | X. Montalban | B. Lie | P. Calabresi | G. Stewart | D. Booth | F. Paul | M. Lathrop | C. Cotsapas | P. van Damme | P. D. De Jager | C. Graetz | D. Hafler | H. Harbo | E. Celius | J. Khadake | G. Comi | D. Galimberti | P. Sørensen | U. Ziemann | L. Piccio | A. Cross | F. Zipp | C. Agliardi | C. Lill | L. Alfredsson | I. Kockum | M. Jagodic | I. Jelcic | F. Piehl | M. Sospedra | Roland Martin | B. Hemmer | P. Stridh | T. Andlauer | C. Gasperi | H. Wiendl | R. Gold | B. Tackenberg | A. Oturai | S. Baranzini | S. Hauser | J. Oksenberg | C. Schaefer | M. Mitrovič | D. Cusi | F. Karpe | M. Neville | S. Caillier | L. Barcellos | N. Patsopoulos | I. Konidari | P. Gourraud | P. Hysi | M. Comabella | A. Santaniello | F. Esposito | F. Then Bergh | R. Hintzen | U. Zettl | E. Dardiotis | G. Hadjigeorgiou | C. Heesen | G. Lachance | J. McCauley | J. Saarela | K. Myhr | H. Tumani | J. Hillert | B. Fontaine | K. Edwards | R. Linker | T. Olsson | J. Charlesworth | C. Warnke | S. D'alfonso | A. Spurkland | C. Hawkins | D. Buck | I. Cournu-Rebeix | B. Dubois | M. Leone | F. Sellebjerg | A. Ivinson | C. Comi | M. Stangel | R. Lemmens | B. Wildemann | E. Lathi | B. Knier | Mary F. Davis | N. Barizzone | V. Damotte | S. Delgado | V. Grummel | Clara P. Manrique | J. Mescheriakova | M. Sorosina | L. Guillot-Noel | S. Vukusik | V. Pongratz | A. Bayas | E. Mascia | L. Ferre | S. Bos | S. Kalra | M. Dembele | K. Fitzgerald | B. Taylor | F. Martinelli Boneschi | Ashley H Beecham | H. Bach Søndergaard | H. Weiner | Cornelia van Duijn | C. McCabe | B. Cree | T. Dankowski | Marie-Beatrice Dhooghe | Lise Wegner Thoerner | Tania Kumpfel | Efthimios Luessi | Lotti Tajoori | L. Ferré | C. Manrique

[1]  T. Hankemeier,et al.  Genome-wide association study of plasma lipids , 2019, bioRxiv.

[2]  Luke R. Lloyd-Jones,et al.  Signatures of negative selection in the genetic architecture of human complex traits , 2018, Nature Genetics.

[3]  Raquel S. Sevilla,et al.  Exome-wide association study of plasma lipids in >300,000 individuals , 2017, Nature Genetics.

[4]  A. Price,et al.  Quantification of frequency-dependent genetic architectures and action of negative selection in 25 UK Biobank traits , 2017, bioRxiv.

[5]  Nick C Fox,et al.  Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease , 2017, Nature Genetics.

[6]  H. Ullum,et al.  The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility , 2017, bioRxiv.

[7]  Luke R. Lloyd-Jones,et al.  Widespread signatures of negative selection in the genetic architecture of human complex traits , 2017, bioRxiv.

[8]  Marcelo P. Segura-Lepe,et al.  Rare and low-frequency coding variants alter human adult height , 2016, Nature.

[9]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[10]  Jia Jia,et al.  Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits , 2016, Nature Genetics.

[11]  He Gao,et al.  Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. , 2016, American journal of human genetics.

[12]  Christian Gieger,et al.  Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation , 2016, Science Advances.

[13]  A. Fox,et al.  Common and Low Frequency Variants in MERTK Are Independently Associated with Multiple Sclerosis Susceptibility with Discordant Association Dependent upon HLA-DRB1*15:01 Status , 2016, PLoS genetics.

[14]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[15]  M. Waldenberger,et al.  Successful Replication of GWAS Hits for Multiple Sclerosis in 10,000 Germans Using the Exome Array , 2015, Genetic epidemiology.

[16]  Calliope A. Dendrou,et al.  Class II HLA interactions modulate genetic risk for multiple sclerosis , 2015, Nature Genetics.

[17]  J. Grutzendler,et al.  Genetic variants associated with autoimmunity drive NFκB signaling and responses to inflammatory stimuli , 2015, Science Translational Medicine.

[18]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[19]  R. Tothill,et al.  Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals , 2015, Immunology and cell biology.

[20]  M. Ban,et al.  Multiple sclerosis genetics , 2014, The Lancet Neurology.

[21]  Gad Abraham,et al.  Fast Principal Component Analysis of Large-Scale Genome-Wide Data , 2014, bioRxiv.

[22]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[23]  M. Bottai,et al.  Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden , 2014, Brain : a journal of neurology.

[24]  M. Pirinen,et al.  Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis , 2013, Nature Genetics.

[25]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[26]  Patrick F. Sullivan,et al.  zCall: a rare variant caller for array-based genotyping: Genetics and population analysis , 2012, Bioinform..

[27]  Claudio J. Verzilli,et al.  An Abundance of Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 People , 2012, Science.

[28]  S. Ziegler,et al.  Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. , 2012, Immunity.

[29]  G. Stewart,et al.  A genome-wide association study in progressive multiple sclerosis , 2012, Multiple sclerosis.

[30]  P. D. de Bakker,et al.  Genome‐wide meta‐analysis identifies novel multiple sclerosis susceptibility loci , 2011, Annals of neurology.

[31]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[32]  C. Baecher-Allan,et al.  Identification of T helper type 1–like, Foxp3+ regulatory T cells in human autoimmune disease , 2011, Nature Medicine.

[33]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[34]  F. Holsboer,et al.  Evidence for VAV2 and ZNF433 as susceptibility genes for multiple sclerosis , 2010, Journal of Neuroimmunology.

[35]  Gianmauro Cuccuru,et al.  Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis , 2010, Nature Genetics.

[36]  Jake K. Byrnes,et al.  Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls , 2010 .

[37]  Ludwig Kappos,et al.  Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. , 2010, American journal of human genetics.

[38]  Jake K. Byrnes,et al.  Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls , 2010, Nature.

[39]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[40]  Pablo Moscato,et al.  Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20 , 2009, Nature Genetics.

[41]  Ludwig Kappos,et al.  Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci , 2009, Nature Genetics.

[42]  P. Matthews,et al.  Pathway and network-based analysis of genome-wide association studies in multiple sclerosis , 2009, Human molecular genetics.

[43]  Judy H. Cho,et al.  Finding the missing heritability of complex , 2009 .

[44]  M. Daly,et al.  Genetic Mapping in Human Disease , 2008, Science.

[45]  Bryan R. G. Williams,et al.  Interferon-inducible antiviral effectors , 2008, Nature Reviews Immunology.

[46]  Simon C. Potter,et al.  Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants , 2007, Nature Genetics.

[47]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[48]  Yuan Shen,et al.  FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression , 2007, Proceedings of the National Academy of Sciences.

[49]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[50]  M. Daly,et al.  A high-density screen for linkage in multiple sclerosis. , 2005, American journal of human genetics.

[51]  A. Woodard,et al.  Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells , 1995, The Journal of experimental medicine.