On the collocation of the cusp aurora and the GPS phase scintillation: A statistical study

The climatology map of the GPS phase scintillation identifies two regions of high scintillation occurrences: around magnetic noon and around magnetic midnight. The scintillation occurrence rate is higher around noon, while the scintillation level is stronger around magnetic midnight. This paper focuses on the dayside scintillation region. In order to resolve the role of the cusp auroral processes in the production of irregularities, we put the GPS phase scintillation in the context of the observed auroral morphology. Results show that the occurrence rate of the GPS phase scintillation is highest inside the auroral cusp, regardless of the scintillation strength and the interplanetary magnetic field (IMF). On average, the scintillation occurrence rate in the cusp region is about 5 times as high as in the region immediately poleward of it. The scintillation occurrence rate is higher when the IMF Bz is negative. When partitioning the scintillation data by the IMF By, the distribution of the scintillation occurrence rate around magnetic noon is similar to that of the poleward moving auroral form (PMAF): there is a higher occurrence rate at earlier (later) magnetic local time when the IMF By is positive (negative). This indicates that the irregularities which give rise to scintillations follow the IMF By-controlled east-west motion of the aurora and plasma. Furthermore, the scintillation occurrence rate is higher when IMF By is positive when the cusp is shifted toward the post noon sector where it may get easier access to the higher density plasma. This suggests that the combined auroral activities (e.g., PMAF) and the density of the intake solar EUV ionized plasma are crucial for the production of scintillations.

[1]  J. Foster Ionospheric signatures of magnetospheric convection , 1984 .

[2]  R. Livingston,et al.  Polar cap F layer patches: Structure and dynamics , 1986 .

[3]  K. Kauristie,et al.  Performance study of the new EMCCD-based all-sky cameras for auroral imaging , 2011 .

[4]  Brent M. Ledvina,et al.  Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations , 2004 .

[5]  Mike Lockwood,et al.  Midday auroral breakup events and related energy and momentum transfer from the magnetosheath , 1990 .

[6]  J. Moen,et al.  GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison , 2014 .

[7]  H. Carlson,et al.  Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars , 2006 .

[8]  H. Carlson,et al.  Case for a new process, not mechanism, for cusp irregularity production , 2007 .

[9]  D. Lorentzen,et al.  Drifting airglow patches in relation to tail reconnection , 2004 .

[10]  Keith M. Groves,et al.  A comparison of TEC fluctuations and scintillations at Ascension Island , 1999 .

[11]  H. Carlson,et al.  On the diurnal variability in F2-region plasma density above the EISCAT Svalbard radar , 2008 .

[12]  P. T. Jayachandran,et al.  Toward the probabilistic forecasting of high‐latitude GPS phase scintillation , 2012 .

[13]  Michael C. Kelley,et al.  The effects of a conducting E layer on classical F region cross‐field plasma diffusion , 1982 .

[14]  P. Jayachandran,et al.  Polar patches: Auroral zone precipitation effects , 2007 .

[15]  Hongqiao Hu,et al.  Direct Observations of the Evolution of Polar Cap Ionization Patches , 2013, Science.

[16]  Per Even Sandholt,et al.  Signatures in the dayside aurora of plasma transfer from the magnetosheath , 1986 .

[17]  Mike Lockwood,et al.  Interplanetary magnetic field control of dayside auroral activity and the transfer of momentum across the dayside magnetopause , 1989 .

[18]  H. Carlson,et al.  EISCAT Svalbard Radar observations of ionospheric plasma dynamics in relation to dayside auroral transients , 2001 .

[19]  Per Even Sandholt,et al.  A statistical study of flux transfer event signatures in the dayside aurora: The IMF By ‐related prenoon‐postnoon symmetry , 1996 .

[20]  Baiqi Ning,et al.  Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum , 2010 .

[21]  J. Moen,et al.  Auroral proton and electron signatures in the dayside aurora , 2000 .

[22]  Kathryn McWilliams,et al.  Observation of polar cap patches and calculation of gradient drift instability growth times: A Swarm case study , 2014 .

[23]  Sandro M. Radicella,et al.  Problems in data treatment for ionospheric scintillation measurements , 2002 .

[24]  H. Carlson,et al.  On the collocation between dayside auroral activity and coherent HF radar backscatter , 2000 .

[25]  F. Rich,et al.  High spatial and temporal resolution observations of the ionospheric cusp , 1995 .

[26]  J. Moen,et al.  Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events , 2000 .

[27]  Mike Lockwood,et al.  Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system , 1992 .

[28]  I. K. Walker,et al.  On the possible role of cusp/cleft precipitation in the formation of polar-cap patches , 1999 .

[29]  S. Basu,et al.  Macroscale modeling and mesoscale observations of plasma density structures in the polar cap , 1995 .

[30]  R. Moffett,et al.  Modeling the ionospheric effects of ion and electron precipitation in the cusp , 1999 .

[31]  H. Carlson,et al.  On the MLT distribution of F region polar cap patches at night , 2007 .

[32]  J. Moen,et al.  In situ measurement of a newly created polar cap patch , 2010 .

[33]  David N. Anderson,et al.  Ionospheric structures in the polar cap: Their origin and relation to 250‐MHz scintillation , 1985 .

[34]  S. E. Pryse,et al.  EISCAT observations of plasma patches at sub-auroral cusp latitudes , 2006 .

[35]  S. Basu,et al.  Characteristics of plasma structuring in the cusp/cleft region at Svalbard , 1998 .

[36]  Paul M. Kintner,et al.  GPS scintillation in the high arctic associated with an auroral arc , 2008 .

[37]  John W. MacDougall,et al.  GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum , 2010 .

[38]  Lars Blomberg,et al.  Solar wind dependence of the occurrence and motion of polar auroral arcs : A statistical study , 2002 .

[39]  Michael C. Kelley,et al.  On the origin and spatial extent of high-latitude F region irregularities , 1982 .

[40]  Luca Spogli,et al.  Space weather challenges of the polar cap ionosphere , 2017, 1708.08617.

[41]  Charles J. Farrugia,et al.  Dayside aurora and the role of IMF ? B y ?/? B z ?: detailed morphology and response to magnetopause reconnection , 2004 .

[42]  C. Meng,et al.  Characteristics of the solar wind controlled auroral emissions , 1998 .

[43]  Jules Aarons,et al.  UHF scintillation activity over polar latitudes , 1981 .

[44]  M. G. Johnsen,et al.  A model based method for obtaining the open/closed field line boundary from the cusp auroral 6300 Å[OI] red line , 2012 .

[45]  R. Heelis,et al.  Structures in ionospheric number density and velocity associated with polar cap ionization patches , 1997 .

[46]  R. L. Leadabrand,et al.  Early results from the DNA Wideband satellite experiment—Complex‐signal scintillation , 1978 .

[47]  C. Rino,et al.  A power law phase screen model for ionospheric scintillation: 1. Weak scatter , 1979 .

[48]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[49]  H. Carlson,et al.  On a new process for cusp irregularity production , 2008 .

[50]  Gerard J. Fasel,et al.  Dayside poleward moving auroral forms: A statistical study , 1995 .

[51]  Q.‐H. Zhang,et al.  On the importance of interplanetary magnetic field B on polar cap patch formation , 2011 .

[52]  Alan S. Rodger,et al.  On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics , 2000 .

[53]  Mike Lockwood,et al.  Motion of the dayside polar cap boundary during substorm cycles: I. Observations of pulses in the magnetopause reconnection rate , 2005 .

[54]  Paul M. Kintner,et al.  GPS and ionospheric scintillations , 2007 .

[55]  A. J. Van Dierendonck,et al.  Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers , 1993 .

[56]  P. T. Jayachandran,et al.  GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm , 2013 .

[57]  P. T. Jayachandran,et al.  Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions , 2011 .

[58]  H. Carlson,et al.  The dynamics and relationships of precipitation, temperature and convection boundaries in the dayside auroral ionosphere , 2004 .

[59]  Knut Stanley Jacobsen,et al.  Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes , 2014 .

[60]  Stanley W. H. Cowley,et al.  Observations of the response time of high-latitude ionospheric convection to variations in the interplanetary magnetic field using EISCAT and IMP-8 data , 1999 .

[61]  Robert H. Holzworth,et al.  Mathematical representation of the auroral oval , 1975 .

[62]  R. Greenwald,et al.  A new mechanism for polar patch formation , 1994 .

[63]  R. Schunk,et al.  Modeling Polar Cap F-Region Patches Using Time Varying Convection , 1993 .

[64]  H. Carlson,et al.  Continuous observation of cusp auroral dynamics in response to an IMF BY polarity change , 1999 .

[65]  C. Rino,et al.  The structure of localized nighttime auroral zone scintillation enhancements , 1980 .

[66]  J. S. Hey,et al.  Fluctuations in Cosmic Radiation at Radio-Frequencies , 1946, Nature.

[67]  S. Basu,et al.  Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes , 1990 .

[68]  K. Yeh,et al.  Radio wave scintillations in the ionosphere , 1982 .

[69]  J. Austen,et al.  Gigahertz scintillations associated with equatorial patches , 1983 .

[70]  S. E. Pryse,et al.  Small scale irregularities associated with a high latitude electron density gradient: scintillation and EISCAT observations , 1988 .

[71]  Beach Theodore,et al.  GLOBAL POSITIONING SYSTEM STUDIES OF EQUATORIAL SCINTILLATIONS , 1998 .

[72]  Marcio Aquino,et al.  Climatology of GPS ionospheric scintillations over high and mid-latitude European regions , 2009 .

[73]  S. Wing,et al.  A new magnetic coordinate system for conjugate studies at high latitudes , 1989 .

[74]  J. Moen,et al.  Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate , 2005 .

[75]  Vincenzo Romano,et al.  GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm , 2005 .

[76]  T. A. Bekkeng,et al.  First in‐situ measurements of HF radar echoing targets , 2012 .

[77]  C. P. Pike,et al.  The midday, discrete auroral gap , 1978 .

[78]  G. Provan,et al.  CUTLASS Finland radar observations of the ionospheric signatures of flux transfer events and the resulting plasma flows , 1998 .

[79]  Keith M. Groves,et al.  Specification and forecasting of scintillations in communication/navigation links: current status and future plans , 2002 .

[80]  Marcio Aquino,et al.  Bipolar climatology of GPS ionospheric scintillation at solar minimum , 2011 .

[81]  H. Carlson,et al.  Convection surrounding mesoscale ionospheric flow channels , 2011 .

[82]  A. Coster,et al.  Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density , 2013 .

[83]  H. Carlson,et al.  Direct observations of injection events of subauroral plasma into the polar cap , 2006 .

[84]  J. Aarons,et al.  Global morphology of ionospheric scintillations , 1971, Proceedings of the IEEE.

[85]  Beichen Zhang,et al.  On the importance of interplanetary magnetic field ∣By∣ on polar cap patch formation , 2011 .

[86]  H. Carlson,et al.  Multi-scale features of solar terrestrial coupling in the cusp ionosphere , 2012 .

[87]  Richard B. Langley,et al.  Improved amplitude- and phase-scintillation indices derived from wavelet detrended high-latitude GPS data , 2012, GPS Solutions.

[88]  J. Moen,et al.  GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere , 2014, 1607.00796.

[89]  Charles J. Farrugia,et al.  A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation , 1998 .

[90]  Timothy K. Yeoman,et al.  Initial backscatter occurrence statistics from the CUTLASS HF radars , 1997 .

[91]  M. Kelley,et al.  Poynting flux measurements on a satellite: A diagnostic tool for space research , 1991 .

[92]  H. Carlson,et al.  High‐resolution observations of the small‐scale flow pattern associated with a poleward moving auroral form in the cusp , 2004 .

[93]  R. Schunk,et al.  Patches in the polar ionosphere: UT and seasonal dependence , 1994 .

[94]  H. Carlson Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques , 2012 .

[95]  H. Carlson,et al.  On the relationship between thin Birkeland current arcs and reversed flow channels in the winter cusp/cleft ionosphere , 2008 .

[96]  S. Basu,et al.  Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods , 1988 .

[97]  Patrick T. Newell,et al.  Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics , 1992 .

[98]  Tsunoda,et al.  High-latitude F-region irregularities: a review and synthesis. Technical report, 1 January 1986-1 July 1987 , 1988 .

[99]  K. Shiokawa,et al.  Relationship between polar cap patches and field‐aligned irregularities as observed with an all‐sky airglow imager at Resolute Bay and the PolarDARN radar at Rankin Inlet , 2009 .

[100]  John A. Klobuchar,et al.  Recent studies of the structure and morphology of auroral zone F region irregularities , 1983 .

[101]  A. Dodson,et al.  Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms , 2008 .

[102]  J. Samson,et al.  Locating the polar cap boundary from observations of 6300 Å auroral emission , 1995 .

[103]  W. Rideout,et al.  Multiradar observations of the polar tongue of ionization , 2005 .