Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

ABSTRACT Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not “poised” upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.

[1]  The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis , 2003, Molecular Genetics and Genomics.

[2]  K. Wassarman,et al.  Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70 , 2008, Molecular microbiology.

[3]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[4]  D. Touati,et al.  Iron and oxidative stress in bacteria. , 2000, Archives of biochemistry and biophysics.

[5]  T. Dandekar,et al.  Carbon metabolism of intracellular bacterial pathogens and possible links to virulence , 2010, Nature Reviews Microbiology.

[6]  J. Cronan,et al.  Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis , 1993, Journal of bacteriology.

[7]  S. Finkel Long-term survival during stationary phase: evolution and the GASP phenotype , 2006, Nature Reviews Microbiology.

[8]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[9]  Richard Robinson,et al.  Both Barriers and Trait Complementarity Govern Pollination Network Structure , 2007, PLoS biology.

[10]  S. Clarke,et al.  The l-Isoaspartyl Protein Repair Methyltransferase Enhances Survival of Aging Escherichia coli Subjected to Secondary Environmental Stresses , 1998, Journal of bacteriology.

[11]  M. Peck,et al.  Modelling the growth of Clostridium perfringens during the cooling of bulk meat. , 2008, International journal of food microbiology.

[12]  S. Iuchi,et al.  Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. , 1996, Journal of biochemistry.

[13]  R. Wagner The regulation of ribosomal RNA synthesis and bacterial cell growth , 2004, Archives of Microbiology.

[14]  R. Gourse,et al.  Involvement of Fis protein in replication of the Escherichia coli chromosome , 1992, Journal of bacteriology.

[15]  D. Dean,et al.  Structure, function, and formation of biological iron-sulfur clusters. , 2005, Annual review of biochemistry.

[16]  M. Saier,et al.  cAMP-cAMP receptor protein complex: five binding sites in the control region of the Escherichia coli mannitol operon. , 1995, Microbiology.

[17]  L. Jespersen,et al.  Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts , 2005, Journal of applied microbiology.

[18]  Douglas L. Brutlag,et al.  BioProspector: Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes , 2000, Pacific Symposium on Biocomputing.

[19]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[20]  Tjelvar S. G. Olsson,et al.  H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. , 2005, The Biochemical journal.

[21]  M. Gelfand,et al.  Comparative and Functional Genomic Analysis of Prokaryotic Nickel and Cobalt Uptake Transporters: Evidence for a Novel Group of ATP-Binding Cassette Transporters , 2006, Journal of bacteriology.

[22]  T. Hwa,et al.  Growth-rate-dependent partitioning of RNA polymerases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[23]  P. Chivers,et al.  Ni(II) and Co(II) sensing by Escherichia coli RcnR. , 2008, Journal of the American Chemical Society.

[24]  E. Groisman The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  A. Richardson,et al.  The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron‐sulphur cluster repair and virulence , 2007, Molecular microbiology.

[26]  J. Monod The Growth of Bacterial Cultures , 1949 .

[27]  Vivek K. Mutalik,et al.  Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Matthew D. Rolfe,et al.  Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase , 2009, BMC Systems Biology.

[29]  A. Campbell,et al.  pH and monovalent cations regulate cytosolic free Ca(2+) in E. coli. , 2008, Biochimica et biophysica acta.

[30]  M. F. White,et al.  The two analogous phosphoglycerate mutases of Escherichia coli , 1999, FEBS letters.

[31]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[32]  B. Py,et al.  Fe-S clusters, fragile sentinels of the cell. , 2011, Current opinion in microbiology.

[33]  N. Brown,et al.  A Design for Life: Prokaryotic Metal-binding MerR Family Regulators , 2005, Biometals.

[34]  T. Nyström A Bacterial Kind of Aging , 2007, PLoS genetics.

[35]  H. P. Coleman,et al.  Batch growth of Salmonella typhimurium LT2: stoichiometry and factors leading to cessation of growth. , 2003, International journal of food microbiology.

[36]  K. Potrykus,et al.  (p)ppGpp: still magical? , 2008, Annual review of microbiology.

[37]  T. Ross,et al.  The effect of abrupt shifts in temperature on the lag phase duration of Escherichia coli and Klebsiella oxytoca. , 2003, International journal of food microbiology.

[38]  Andrew B Nobel,et al.  RNA chaperone activity and RNA-binding properties of the E. coli protein StpA , 2007, Nucleic acids research.

[39]  Donald S. Martin THE OXYGEN CONSUMPTION OF ESCHERICHIA COLI DURING THE LAG AND LOGARITHMIC PHASES OF GROWTH , 1932, The Journal of general physiology.

[40]  K. Tedin,et al.  The Bacterial Signal Molecule, ppGpp, Mediates the Environmental Regulation of Both the Invasion and Intracellular Virulence Gene Programs of Salmonella* , 2006, Journal of Biological Chemistry.

[41]  J. Foster,et al.  Evolution of Bacterial Phosphoglycerate Mutases: Non-Homologous Isofunctional Enzymes Undergoing Gene Losses, Gains and Lateral Transfers , 2010, PloS one.

[42]  A. Thompson,et al.  Salmonella transcriptomics: relating regulons, stimulons and regulatory networks to the process of infection. , 2006, Current opinion in microbiology.

[43]  Max Müller,et al.  Ueber den Einfluss von Fiebertemperaturen auf die Wachsthumsgeschwindigkeit und die Virulenz des Typhusbacillus , 1895, Zeitschrift für Hygiene und Infektionskrankheiten.

[44]  T. D. Schneider,et al.  Anatomy of Escherichia coli σ70 promoters , 2006, Nucleic acids research.

[45]  R. Caprioli,et al.  Comparison of the mechanisms of two distinct aldolases from Escherichia coli grown on gluconeogenic substrates. , 1980, Biochimica et biophysica acta.

[46]  J. Weiner,et al.  The Iron-Sulfur Clusters in Escherichia coli Succinate Dehydrogenase Direct Electron Flow* , 2006, Journal of Biological Chemistry.

[47]  A. McEwan,et al.  Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. , 2005, Biochemical and biophysical research communications.

[48]  K. Wassarman,et al.  Synthesis-Mediated Release of a Small RNA Inhibitor of RNA Polymerase , 2006, Science.

[49]  Wilfred W. Li,et al.  MEME: discovering and analyzing DNA and protein sequence motifs , 2006, Nucleic Acids Res..

[50]  D. Rees,et al.  Molybdenum-cofactor-containing enzymes: structure and mechanism. , 1997, Annual review of biochemistry.

[51]  L. Wu,et al.  Requirement for nickel of the transmembrane translocation of NiFe‐hydrogenase 2 in Escherichia coli , 1996, FEBS letters.

[52]  L. Jespersen,et al.  Genome-wide transcriptional changes during the lag phase of Saccharomyces cerevisiae , 2003, Archives of Microbiology.

[53]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[54]  K. Winzer,et al.  Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses , 2008, BMC Genomics.

[55]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[56]  Chris E Cooper,et al.  Global Iron-dependent Gene Regulation in Escherichia coli , 2003, Journal of Biological Chemistry.

[57]  R. Hausinger,et al.  Nickel uptake and utilization by microorganisms. , 2003, FEMS microbiology reviews.

[58]  G. Dougan,et al.  Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation , 2010, Science.

[59]  H. Garreau,et al.  Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. , 1975, Biochimica et biophysica acta.

[60]  S. Varghese,et al.  Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli , 2009, Molecular microbiology.

[61]  M. Peck,et al.  Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. , 1996, International journal of food microbiology.

[62]  T. Nyström,et al.  Defense against Protein Carbonylation by DnaK/DnaJ and Proteases of the Heat Shock Regulon , 2005, Journal of bacteriology.

[63]  A. Thompson,et al.  The H‐NS‐like protein StpA represses the RpoS (σ38) regulon during exponential growth of Salmonella Typhimurium , 2009, Molecular microbiology.

[64]  E. Cabiscol,et al.  Oxidative stress in bacteria and protein damage by reactive oxygen species. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[65]  A. Khodursky,et al.  Overflow Metabolism in Escherichia coli during Steady-State Growth: Transcriptional Regulation and Effect of the Redox Ratio , 2006, Applied and Environmental Microbiology.

[66]  M. Ibañez-Ruiz,et al.  Identification of RpoS (ςS)-Regulated Genes inSalmonella enterica Serovar Typhimurium , 2000, Journal of bacteriology.

[67]  B. Wanner Phosphorus assimilation and control of the phosphate regulon , 1996 .

[68]  C. A. Thomas,et al.  Molecular cloning. , 1977, Advances in pathobiology.

[69]  T. Nyström,et al.  Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. , 1998, Genes & development.

[70]  F. Heffron,et al.  Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes , 1995, Journal of bacteriology.

[71]  R. Hengge-aronis,et al.  Recent insights into the general stress response regulatory network in Escherichia coli. , 2002, Journal of molecular microbiology and biotechnology.

[72]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[73]  T. Nyström The free-radical hypothesis of aging goes prokaryotic , 2003, Cellular and Molecular Life Sciences CMLS.

[74]  S. Wallace,et al.  Multiprobe RNase Protection Assay Analysis of mRNA Levels for the Escherichia coli Oxidative DNA Glycosylase Genes under Conditions of Oxidative Stress , 2000, Journal of bacteriology.

[75]  W. J. Penfold,et al.  On the Nature of Bacterial Lag , 1914, Journal of Hygiene.

[76]  G. Sezonov,et al.  Escherichia coli Physiology in Luria-Bertani Broth , 2007, Journal of bacteriology.

[77]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[78]  Ivan Matic,et al.  Causes and Consequences of DNA Repair Activity Modulation During Stationary Phase in Escherichia coli , 2007, Critical reviews in biochemistry and molecular biology.

[79]  S. Krishna,et al.  Metal ion transport and regulation in Mycobacterium tuberculosis. , 2004, Frontiers in bioscience : a journal and virtual library.

[80]  M. Peck,et al.  Predictive models of the effect of temperature, pH and acetic and lactic acids on the growth of Listeria monocytogenes. , 1996, International journal of food microbiology.

[81]  H. Aguilaniu,et al.  Differential oxidative damage and expression of stress defence regulons in culturable and non‐culturable Escherichia coli cells , 2003, EMBO reports.

[82]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[83]  Philip Lijnzaad,et al.  Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. , 2005, Molecular cell.

[84]  R. C. Johnson,et al.  Salmonella typhimurium . Sequence , regulation , and functions of fis in , 1994 .

[85]  F. Fang,et al.  Alternative sigma factor interactions in Salmonella: σE and σH promote antioxidant defences by enhancing σS levels , 2005, Molecular microbiology.

[86]  L. Bosch,et al.  The role of FIS in trans activation of stable RNA operons of E. coli. , 1990, The EMBO journal.

[87]  Vladimir Vacic,et al.  Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments , 2006, Bioinform..

[88]  F. W. Outten,et al.  Fur and the Novel Regulator YqjI Control Transcription of the Ferric Reductase Gene yqjH in Escherichia coli , 2010, Journal of bacteriology.

[89]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[90]  B. Stocker,et al.  Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines , 1981, Nature.

[91]  Tyrrell Conway,et al.  Metabolic genomics. , 2005, Advances in microbial physiology.

[92]  A Martinez,et al.  Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis , 1995, Journal of bacteriology.

[93]  J. Hinton,et al.  H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria , 2006, PLoS pathogens.

[94]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[95]  S. Normark,et al.  Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  O. Maaløe,et al.  The transition between different physiological states during balanced growth of Salmonella typhimurium. , 1958, Journal of general microbiology.

[97]  Caroline Cuny,et al.  Induction of a Global Stress Response during the First Step of Escherichia coli Plate Growth , 2006, Applied and Environmental Microbiology.

[98]  H. Northen,et al.  Multiple redundant stress resistance mechanisms are induced in Salmonella enterica serovar Typhimurium in response to alteration of the intracellular environment via TLR4 signalling. , 2009, Microbiology.

[99]  A. Campbell,et al.  An assessment of the role of intracellular free Ca2+ in E. coli. , 1999, Biochimie.

[100]  P. Fernández,et al.  Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes. , 1997, International journal of food microbiology.

[101]  Volker F. Wendisch,et al.  Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation , 2007, Applied Microbiology and Biotechnology.

[102]  R. Hengge Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. , 2009, Research in microbiology.

[103]  E. Martínez-García,et al.  Stationary phase in gram-negative bacteria. , 2010, FEMS microbiology reviews.

[104]  J Baranyi,et al.  A dynamic approach to predicting bacterial growth in food. , 1994, International journal of food microbiology.

[105]  D. Giedroc,et al.  Metal sensor proteins: nature's metalloregulated allosteric switches. , 2007, Dalton transactions.

[106]  Jolyon Holdstock,et al.  Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  A. Kolb,et al.  Action of CAP on the malT promoter in vitro , 1983, Journal of bacteriology.

[108]  M. Jakobsen,et al.  Global transcription profiles and intracellular pH regulation measured in Bacillus licheniformis upon external pH upshifts , 2004, Archives of Microbiology.

[109]  Julio Collado-Vides,et al.  RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) , 2010, Nucleic Acids Res..

[110]  J. Beckwith,et al.  The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coliCytoplasm* , 1997, The Journal of Biological Chemistry.

[111]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[112]  D. Prieur,et al.  The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. , 2001, Research in microbiology.

[113]  K Bernaerts,et al.  Predictive modelling of the microbial lag phase: a review. , 2004, International journal of food microbiology.

[114]  Leopold Parts,et al.  Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. , 2009, Genome research.

[115]  P. Chivers,et al.  Nickel homeostasis in Escherichia coli – the rcnR‐rcnA efflux pathway and its linkage to NikR function , 2006, Molecular microbiology.

[116]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[117]  R. Maier,et al.  Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium. , 2007, Microbiology.