Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis

[1]  A. Mironov,et al.  The characterization of internal promoters in the Bacillus subtilis riboflavin biosynthesis operon , 2012, Russian Journal of Genetics.

[2]  Christian Vogl,et al.  RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains , 2011, BMC biotechnology.

[3]  Tao Chen,et al.  Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. , 2011, Bioresource technology.

[4]  Nicola Zamboni,et al.  Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed‐batch culture , 2009, Biotechnology and bioengineering.

[5]  Tao Chen,et al.  Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis , 2010, Applied Microbiology and Biotechnology.

[6]  Tao Chen,et al.  Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis , 2009 .

[7]  Tao Chen,et al.  Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. , 2009, Metabolic engineering.

[8]  A. Danchin,et al.  From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later , 2009, Microbiology.

[9]  M. Jules,et al.  The Bacillus subtilis ywjI (glpX) Gene Encodes a Class II Fructose-1,6-Bisphosphatase, Functionally Equivalent to the Class III Fbp Enzyme , 2009, Journal of bacteriology.

[10]  Nicola Zamboni,et al.  Screening of Bacillus subtilis transposon mutants with altered riboflavin production. , 2008, Metabolic engineering.

[11]  U. Sauer,et al.  CcpN Controls Central Carbon Fluxes in Bacillus subtilis , 2008, Journal of bacteriology.

[12]  Christoph Wittmann,et al.  Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase. , 2007, Journal of biotechnology.

[13]  Tao Chen,et al.  Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs , 2007, Applied Microbiology and Biotechnology.

[14]  Xueming Zhao,et al.  Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. , 2007, FEMS microbiology letters.

[15]  Tao Chen,et al.  Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis , 2006, Applied Microbiology and Biotechnology.

[16]  Christoph Wittmann,et al.  Amplified Expression of Fructose 1,6-Bisphosphatase in Corynebacterium glutamicum Increases In Vivo Flux through the Pentose Phosphate Pathway and Lysine Production on Different Carbon Sources , 2005, Applied and Environmental Microbiology.

[17]  Uwe Sauer,et al.  The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. , 2005, FEMS microbiology reviews.

[18]  S. Aymerich,et al.  CcpN (YqzB), a novel regulator for CcpA‐independent catabolite repression of Bacillus subtilis gluconeogenic genes , 2005, Molecular microbiology.

[19]  Ajay Singh,et al.  Developments in the use of Bacillus species for industrial production. , 2004, Canadian journal of microbiology.

[20]  Jörg Stülke,et al.  Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. , 2003, Metabolic engineering.

[21]  R. Huber,et al.  Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase. , 2003, Journal of molecular biology.

[22]  Nicola Zamboni,et al.  Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. , 2003, Metabolic engineering.

[23]  C. Liao,et al.  Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyii NRRL 1363. , 2002, Bioresource technology.

[24]  Thomas Szyperski,et al.  Intracellular Carbon Fluxes in Riboflavin-Producing Bacillussubtilis during Growth on Two-Carbon Substrate Mixtures , 2002, Applied and Environmental Microbiology.

[25]  Uwe Sauer,et al.  Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture , 2001, Journal of bacteriology.

[26]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[27]  J E Bailey,et al.  Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. , 2001, Biotechnology and bioengineering.

[28]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[29]  S. Aymerich,et al.  Two Glyceraldehyde-3-phosphate Dehydrogenases with Opposite Physiological Roles in a Nonphotosynthetic Bacterium* , 2000, The Journal of Biological Chemistry.

[30]  J. Revuelta,et al.  Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production , 2000, Applied Microbiology and Biotechnology.

[31]  A. Bacher,et al.  GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production , 1999, Journal of Industrial Microbiology and Biotechnology.

[32]  N. Hannett,et al.  Genetic engineering of Bacillus subtilis for the commercial production of riboflavin , 1999, Journal of Industrial Microbiology and Biotechnology.

[33]  Y. Fujita,et al.  Identification and Expression of the Bacillus subtilis Fructose-1,6-Bisphosphatase Gene (fbp) , 1998, Journal of bacteriology.

[34]  J E Bailey,et al.  Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. , 1998, Biotechnology and bioengineering.

[35]  M. Ott,et al.  Molecular cloning and characterisation of the ribC gene from Bacillus subtilis : a point mutation in ribC results in riboflavin overproduction , 1997, Molecular and General Genetics MGG.

[36]  U. Sauer,et al.  Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis , 1996, Applied and environmental microbiology.