Cutoff for a one-sided transposition shuffle
暂无分享,去创建一个
[1] Nadia Lafrenière. Eigenvalues of symmetrized shuffling operators , 2018, 1811.07196.
[2] Yuval Peres,et al. Shuffling by Semi-random Transpositions , 2004 .
[3] R. Pinsky. Cyclic to Random Transposition Shuffles , 2012, 1204.2081.
[4] N. Berestycki,et al. Effect of scale on long-range random graphs and chromosomal inversions , 2011, 1102.4479.
[5] N. Berestycki,et al. Cutoff for conjugacy-invariant random walks on the permutation group , 2014, 1410.4800.
[6] Laurent Saloff-Coste,et al. Random Walks on Finite Groups , 2004 .
[7] P. Diaconis,et al. Generating a random permutation with random transpositions , 1981 .
[8] A. B. Dieker,et al. Spectral analysis of random-to-random Markov chains , 2015 .
[9] Partial mixing of semi-random transposition shuffles , 2013, 1302.2601.
[10] Ofer Zeitouni,et al. Mixing times for random k-cycles and coalescence-fragmentation chains , 2010, 1001.1894.
[11] V. Climenhaga. Markov chains and mixing times , 2013 .
[12] H. Lacoin. Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion , 2013, 1309.3873.
[13] P. Diaconis. Group representations in probability and statistics , 1988 .
[14] Bruce E. Sagan,et al. The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.
[15] Oliver Matheau-Raven. Random Walks on the Symmetric Group: Cutoff for One-sided Transposition Shuffles , 2020, 2012.05118.
[16] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .