A generalized finite difference method using Coatmèlec lattices

Generalized finite difference methods require that a properly posed set of nodes exists around each node in the mesh, so that the solution for the corresponding multivariate interpolation problem be unique. In this paper we first show that the construction of these meshes can be computerized using a relatively simple algorithm based on the concept of a Coatmelec lattice. Then, we present a generalized finite difference method which provides a numerical solution of a partial differential equation over an arbitrary domain, using the generated meshes. The accuracy and mesh adaptivity of the method is evaluated using elliptical equations in several domains.

[1]  Niklaus Wirth,et al.  Algorithms + Data Structures = Programs , 1976 .

[2]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[3]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[4]  Robert Kao,et al.  A General Finite Difference Method for Arbitrary Meshes , 1975 .

[5]  Yunhua Luo,et al.  A generalized finite-difference method based on minimizing global residual , 2002 .

[6]  Xue-Zhang Liang,et al.  The application of Cayley-Bacharach theorem to bivariate Lagrange interpolation , 2004 .

[7]  Luis Gavete,et al.  Influence of several factors in the generalized finite difference method , 2001 .

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[10]  M. Gasca,et al.  On Lagrange and Hermite interpolation in Rk , 1982 .

[11]  R. H. MacNeal,et al.  An asymmetrical finite difference network , 1953 .

[12]  B. M. Fulk MATH , 1992 .

[13]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[14]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[15]  V. Girault,et al.  Theory of a Finite Difference Method on Irregular Networks , 1974 .

[16]  Luis Gavete,et al.  Improvements of generalized finite difference method and comparison with other meshless method , 2003 .

[17]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[18]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[19]  Christian Coatmélec Approximation et interpolation des fonctions différentiables de plusieurs variables , 1966 .

[20]  P. S. Jensen FINITE DIFFERENCE TECHNIQUES FOR VARIABLE GRIDS , 1972 .

[21]  K. C. Chung A GENERALIZED FINITE-DIFFERENCE METHOD FOR HEAT TRANSFER PROBLEMS OF IRREGULAR GEOMETRIES , 1981 .

[22]  Eugenio Oñate,et al.  To mesh or not to mesh. That is the question , 2006 .

[23]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[24]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[25]  A. A. Tseng,et al.  A finite difference scheme with arbitrary mesh systems for solving high-order partial differential equations , 1989 .