On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects

Abstract Novel energy-based coupled elastoplastic damage theories are presented in this paper. The proposed formulation employs irreversible thermodynamics and internal state variable theory for ductile and brittle materials. At variance with Lemaitre's work on damage-elastoplasticity, the present formulation renders rational thermodynamic potential and damage energy release rate. In contrast to previous work by Simo and Ju (featuring an additive split of the stress tensor), current formulation assumes an additive split of the strain tensor. It is shown that the “strain split” damage-elastoplasticity formulation leads to more robust tangent moduli than the “stress split” formulation. The plastic flow rule and hardening law are characterized in terms of the effective quantities; viz. the effective stress space plasticity . This mechanism is both physically well-motivated and computationally efficient. Further, a fourth-order anisotropic damage mechanism is proposed for brittle materials. Rational mechanisms are also presented to account for the microcrack opening and closing operations as well as the strain-rate dependency of microcrack growth. Efficient computational algorithms for proposed elasloplaslic damage models are subsequently explored by making use of the “operator splitting” methodology. In particular, new three-step operator split algorithms are presented Application is made to a class of inviseid and rate-dependent cap-damage models for concrete and mortar. Experimental validations are also given to illustrate the applicability of the proposed damage models.

[1]  J. Marsden,et al.  Product formulas and numerical algorithms , 1978 .

[2]  Jean Lemaitre,et al.  Application of Damage Concepts to Predict Creep-Fatigue Failures , 1979 .

[3]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[4]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[5]  L. Kachanov Crack Growth Under Conditions of Creep and Damage , 1981 .

[6]  Z. Bažant,et al.  Nonlocal continuum damage and measurement of characteristic length , 1988 .

[7]  D. Krajcinovic,et al.  A constitutive theory for progressively deteriorating brittle solids , 1987 .

[8]  Y. Weitsman,et al.  Coupled damage and moisture-transport in fiber-reinforced, polymeric composites , 1987 .

[9]  A. Dragon,et al.  Plasticity and ductile fracture damage: Study of void growth in metals , 1985 .

[10]  Surendra P. Shah,et al.  Properties of Concrete Subjected to Impact , 1983 .

[11]  D. R. Hayhurst,et al.  Creep rupture of structures , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[13]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[14]  J. Chaboche,et al.  Le Concept de Contrainte Effective Appliqué à l’Élasticité et à la Viscoplasticité en Présence d’un Endommagement Anisotrope , 1982 .

[15]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[16]  Dusan Krajcinovic,et al.  Constitutive Equations for Damaging Materials , 1983 .

[17]  A. Dragon,et al.  On finite damage: ductile fracture-damage evolution , 1985 .

[18]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[19]  D. François Fracture and Damage Mechanics of Concrete , 1985 .

[20]  Karl S. Pister,et al.  Assessment of cap model: consistent return algorithms and rate-dependent extension , 1988 .

[21]  Ramesh Talreja,et al.  A continuum mechanics characterization of damage in composite materials , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  I. S. Sandler,et al.  An algorithm and a modular subroutine for the CAP model , 1979 .

[23]  Jacky Mazars,et al.  Application of Continuous Damage Mechanics to Strain and Fracture Behavior of Concrete , 1985 .

[24]  D. Krajcinovic,et al.  Size Effect in Concrete , 1988 .

[25]  D. Krajcinovic Creep of Structures —A Continuous Damage Mechanics Approach , 1983 .

[26]  Paulo J.M. Monteiro,et al.  Continuum Damage of Cement Paste and Mortar as Affected by Porosity and Sand Concentration , 1989 .

[27]  G. A. Hegemier,et al.  Strain softening of rock, soil and concrete — a review article , 1984 .

[28]  J. Takeda,et al.  DEFORMATION AND FRACTURE OF CONCRETE SUBJECTED TO DYNAMIC LOAD , 1972 .

[29]  Surendra P. Shah,et al.  Rate-sensitive damage theory for brittle solids , 1984 .

[30]  Mark Kachanov,et al.  Elastic solids with many cracks: A simple method of analysis , 1987 .

[31]  Dusan Krajcinovic,et al.  A micromechanical damage model for concrete , 1986 .

[32]  M. E. Kipp,et al.  Continuum modelling of explosive fracture in oil shale , 1980 .

[33]  George Y. Baladi,et al.  Generalized Cap Model for Geological Materials , 1976 .

[34]  A. Eringen Interaction of a dislocation with a crack , 1983 .

[35]  F. Sidoroff,et al.  Damage Induced Elastic Anisotropy , 1982 .

[36]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[37]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[38]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[39]  D. Krajcinovic Constitutive Theories for Solids with Defective Microstructure , 1985 .

[40]  Dusan Krajcinovic,et al.  A self-consistent model for microcrack-weakened solids , 1987 .

[41]  M. Terrien EMISSION ACOUSTIQUE ET "COMPORTEMENT MECANIQUE POST-CRITIQUE" D'UN BETON SOLLICITE EN TRACTION , 1980 .

[42]  Jean-Jacques Marigo,et al.  MODELLING OF BRITTLE AND FATIGUE DAMAGE FOR ELASTIC MATERIAL BY GROWTH OF MICROVOIDS , 1985 .

[43]  M. Ortiz A method of homogenization of elastic media , 1987 .

[44]  A. C. Eringen,et al.  Mechanics of Micromorphic Continua , 1968 .

[45]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[46]  D. Krajcinovic Micromechanical Basis of Phenomenological Models , 1987 .

[47]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[48]  Dusan Krajcinovic,et al.  The Continuous Damage Theory of Brittle Materials, Part 1: General Theory , 1981 .

[49]  A. Eringen,et al.  Theory of Nonlocal Elasticity and Some Applications , 1984 .

[50]  J. B. Martin,et al.  A progressive damage «continuum» model for granular materials , 1984 .

[51]  M. Kachanov,et al.  A microcrack model of rock inelasticity part I: Frictional sliding on microcracks , 1982 .

[52]  J. C. Simo,et al.  On continuum damage-elastoplasticity at finite strains , 1989 .

[53]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[54]  Sia Nemat-Nasser,et al.  Overall moduli of solids with microcracks: Load-induced anisotropy , 1983 .

[55]  J. Lemaître How to use damage mechanics , 1984 .

[56]  P. M. Ku ASME winter annual meeting , 1978 .

[57]  J. Hult Creep in Continua and Structures , 1974 .

[58]  Chien H. Wu Tension-Compression Test of a Concrete Specimen Via a Structure Damage Theory , 1985 .

[59]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[60]  K. E. Løland Continuous damage model for load-response estimation of concrete , 1980 .

[61]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[62]  K. C. Valanis,et al.  On the Uniqueness of Solution of the Initial Value Problem in Softening Materials , 1985 .

[63]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[64]  Jean-Louis Chaboche,et al.  Continuous damage mechanics — A tool to describe phenomena before crack initiation☆ , 1981 .

[65]  Mark Kachanov,et al.  Continuum Model of Medium with Cracks , 1980 .

[66]  Michael Ortiz,et al.  An analytical study of the localized failure modes of concrete , 1987 .