The connection between quadratic bent–negabent functions and the Kerdock code

In this paper we prove that all bent functions in the Kerdock code, except for the coset of the symmetric quadratic bent function, are bent–negabent. In this direction, we characterize the set of quadratic bent–negabent functions and show some results connecting quadratic bent–negabent functions and the Kerdock code. Further, we note that there are bent–negabent preserving nonsingular transformations outside the well known class of orthogonal ones that might provide additional functions in the bent–negabent set. This is the first time we could identify non-orthogonal (nonsingular) linear transformations that preserve bent–negabent property for a special subset.

[1]  Yongzhuang Wei,et al.  Constructions of Bent—Negabent Functions and Their Relation to the Completed Maiorana—McFarland Class , 2015, IEEE Transactions on Information Theory.

[2]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[3]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[4]  Anthony M. Kerdock,et al.  A Class of Low-Rate Nonlinear Binary Codes , 1972, Inf. Control..

[5]  Jean-Marie Goethals,et al.  Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.

[6]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[7]  Matthew G. Parker,et al.  On Boolean Functions Which Are Bent and Negabent , 2007, SSC.

[8]  J. H. van Lint,et al.  Kerdock codes and Preparata codes , 1983 .

[9]  Matthew G. Parker,et al.  Negabent Functions in the Maiorana-McFarland Class , 2008, SETA.

[10]  Yue Zhou,et al.  Pairs of Quadratic Forms over Finite Fields , 2016, Electron. J. Comb..

[11]  Sugata Gangopadhyay,et al.  Investigations on Bent and Negabent Functions via the Nega-Hadamard Transform , 2012, IEEE Transactions on Information Theory.

[12]  Xiaohu Tang,et al.  Characterization of Negabent Functions and Construction of Bent-Negabent Functions With Maximum Algebraic Degree , 2013, IEEE Transactions on Information Theory.

[13]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[14]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[15]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[16]  Dengguo Feng,et al.  On Quadratic Bent Functions in Polynomial Forms , 2007, IEEE Transactions on Information Theory.