Rod pathways: the importance of seeing nothing

Anatomical and physiological studies of the mammalian retina have revealed two primary pathways available for the transmission of rod signals to the ganglion cells: one via ON rod bipolars, amacrine II cells, and ON and OFF cone bipolars, which is exquisitely designed for the transmission of single-photon absorption events; and a second via rod-cone gap junctions, and ON and OFF cone bipolars, which is designed for the transmission of multiple photon-absorption events at higher light levels. Psychophysical and electroretinographic (ERG) studies in normal observers and in two rare types of observer, who are devoid of either rod or cone function, support an analogous duality in the human visual system, the clearest signature of which is a loss of flicker visibility and ERG amplitude at frequencies near 15 Hz that results from destructive interference between sensitive 'slow' and insensitive 'fast' rod signals. The slow rod signal is most probably derived from the ON rod bipolar pathway and the fast signal from the rod-cone gap junction and cone pathways. Evidence has emerged recently for a third, insensitive rod pathway between rods and OFF cone bipolars, but it has so far only been observed clearly in rodents.

[1]  Helga Kolb,et al.  Rod pathways in the retina of the cat , 1983, Vision Research.

[2]  M. Alpern,et al.  The enigma of typical total monochromacy. , 1960, American journal of ophthalmology.

[3]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[4]  I. Morgan,et al.  Progress in retinal research Vol. 5,N. Osborne andG. Chader (eds). Pergamon Press, Oxford (1985). 349 pp. , 1987, Neuroscience.

[5]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[6]  K. Yagasaki,et al.  On- and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. , 1987, Japanese journal of ophthalmology.

[7]  P Gouras,et al.  Horizontal cells in cat retina with independent dendritic systems. , 1975, Science.

[8]  D. Mastronarde Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. , 1983, Journal of neurophysiology.

[9]  M. Alpern,et al.  Typical total monochromacy. A histological and psychophysical study. , 1965, Archives of ophthalmology.

[10]  Helga Kolb,et al.  Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina , 1983, Vision Research.

[11]  Ralph J. Jensen,et al.  Rod pathways in mammalian retinae , 1990, Trends in Neurosciences.

[12]  Mark C. W. van Rossum,et al.  Noise removal at the rod synapse of mammalian retina , 1998, Visual Neuroscience.

[13]  Takehiko Saito Physiological and morphological differences between on- and off-center bipolar cells in the vertebrate retina , 1987, Vision Research.

[14]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[15]  S. Archer,et al.  Neurobiology and Clinical Aspects of the Outer Retina , 1995, Springer Netherlands.

[16]  N. Vardi,et al.  Differential expression of ionotropic glutamate receptor subunits in the outer retina , 1999, The Journal of comparative neurology.

[17]  R. Hess,et al.  Night vision : basic, clinical, and applied aspects , 1990 .

[18]  L. Missotten,et al.  The ultrastructure of the human retina , 1965 .

[19]  Daniel G. Green,et al.  Double branched flicker fusion curves from the all-rod skate retina. , 1975, Science.

[20]  H. Kolb,et al.  Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.

[21]  H Ripps,et al.  Night blindness revisited: from man to molecules. Proctor lecture. , 1982, Investigative ophthalmology & visual science.

[22]  M. G. Holland,et al.  Rhodopsin bleaching signals in essential night blindness , 1972, The Journal of physiology.

[23]  H. Kolb,et al.  OFF‐alpha and OFF‐beta ganglion cells in cat retina. I: Intracellular electrophysiology and HRP stains , 1993, The Journal of comparative neurology.

[24]  J D Conner,et al.  The temporal properties of rod vision. , 1982, The Journal of physiology.

[25]  D. J. Bradley Night Vision: Basic, Clinical and Applied Aspects , 1991 .

[26]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[27]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Helga Kolb,et al.  Amacrine cells of the cat retina , 1981, Vision Research.

[29]  B. Boycott,et al.  The cone synapses of cone bipolar cells of primate retina , 1997, Journal of neurocytology.

[30]  S. Jacobson,et al.  Total colourblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel , 1998, Nature Genetics.

[31]  G Falk,et al.  Responses of rod‐bipolar cells in the dark‐adapted retina of the dogfish, Scyliorhinus canicula , 1980, The Journal of physiology.

[32]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  W A Rushton,et al.  Dark adaptation and increment threshold in a rod monochromat. , 1965, The Journal of physiology.

[34]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[35]  D. Copenhagen,et al.  Multiple classes of glutamate receptor on depolarizing bipolar cells in retina , 1987, Nature.

[36]  G. Burghardt,et al.  Social Behavior in Hatchling Green Iguanas: Life at a Reptile Rookery , 1977, Science.

[37]  R. Carr,et al.  ELECTROPHYSIOLOGIC ASPECTS OF SEVERAL RETINAL DISEASES. , 1964, American journal of ophthalmology.

[38]  E. Berson,et al.  Cone electroretinograms in congenital nyctalopia with myopia. , 1974, American journal of ophthalmology.

[39]  H. Wässle,et al.  Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.

[40]  R. Hess,et al.  Spatial and temporal limits of vision in the achromat. , 1986, The Journal of physiology.

[41]  G. Schubert,et al.  Beitrag zur Analyse des menschlichen Elektroretinogramms , 1952 .

[42]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[43]  Joel Pokorny,et al.  Rod inputs to macaque ganglion cells , 1997, Vision Research.

[44]  Color Vision: From Genes to Perception , 2000, Trends in Neurosciences.

[45]  S. Hecht,et al.  THE VISUAL FUNCTIONS OF THE COMPLETE COLORBLIND , 1948, The Journal of general physiology.

[46]  P. Gouras,et al.  Neurocircuitry of the retina : a Cajal memorial , 1985 .

[47]  H. Bornschein,et al.  Comparative electroretinographic studies in congenital night blindness and total color blindness. , 1957, A.M.A. archives of ophthalmology.

[48]  C. Moorehead All rights reserved , 1997 .

[49]  R. Chappell,et al.  Two classes of bipolar cell in the retina of the skateRaja erinacea , 1996, Journal of neurocytology.

[50]  G. Villegas ULTRASTRUCTURE OF THE HUMAN RETINA. , 1964, Journal of anatomy.

[51]  K. Brown,et al.  Isolation and Identification of a Receptor Potential from the Pure Cone Fovea of the Monkey Retina , 1962, Nature.

[52]  R A Weale,et al.  Rhodopsin and the electrical activity of the retina in congenital night blindness. , 1966, Investigative ophthalmology.

[53]  R. West Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections , 1978, Vision Research.

[54]  R. Nelson,et al.  Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.

[55]  J. N. Hayward,et al.  Congenital total color blindness: a clincopathological report. , 1960, Archives of ophthalmology.

[56]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[57]  K. Yagasaki,et al.  Congenital stationary night blindness with negative electroretinogram. A new classification. , 1986 .

[58]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[59]  R. Weiler,et al.  The modulation of intercellular coupling in the retina. , 1998, Seminars in cell & developmental biology.

[60]  M. Glickstein,et al.  Receptors in the monochromat eye , 1975, Vision Research.

[61]  Visual functions in congenital night blindness. , 1966, Investigative ophthalmology.

[62]  A. Stockman,et al.  Two signals in the human rod visual system: A model based on electrophysiological data , 1995, Visual Neuroscience.

[63]  J. Dowling The Ultrastructure of the Human Retina , 1967 .

[64]  Heinz Wässle,et al.  The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretinin , 1995, The Journal of comparative neurology.

[65]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[66]  Scott Nawy,et al.  Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells , 1990, Nature.

[67]  Donald I. A. MacLeod,et al.  Rod flicker perception: Scotopic duality, phase lags and destructive interference , 1989, Vision Research.

[68]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[69]  B. Boycott,et al.  The cone synapses of DB1 diffuse, DB6 diffuse and invaginating midget, bipolar cells of a primate retina. , 1996, Journal of neurocytology.

[70]  N. Vardi,et al.  Simulation of the Aii amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties , 1995, Visual Neuroscience.

[71]  G. Buchsbaum,et al.  Mammalian rod terminal: Architecture of a binary synapse , 1995, Neuron.

[72]  L. Frishman,et al.  Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. , 1989, Journal of neurophysiology.

[73]  H. Wässle,et al.  Electron microscopic analysis of the rod pathway of the rat retina , 1993, The Journal of comparative neurology.

[74]  P Sterling,et al.  Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  J. Verweij,et al.  Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. , 1999, Vision Research.

[76]  A E Krill,et al.  Photopic abnormalities in congenital stationary nightblindness. , 1971, Investigative ophthalmology.

[77]  H. Kolb,et al.  The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations , 1977, Journal of neurocytology.

[78]  Synapses between cones and diffuse bipolar cells of a primate retina , 1995, Journal of neurocytology.

[79]  Heinz Wässle,et al.  Immunocytochemical analysis of bipolar cells in the macaque monkey retina , 1994, The Journal of comparative neurology.

[80]  R. W. Rodieck The First Steps in Seeing , 1998 .

[81]  H. Wässle,et al.  Glycine receptors in the rod pathway of the macaque monkey retina , 1996, Visual Neuroscience.

[82]  E. Raviola,et al.  Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits , 1975, The Journal of cell biology.

[83]  P. Sterling “Knocking out” a Neural Circuit , 1998, Neuron.

[84]  J. Ashmore,et al.  Transmission of visual signals to bipolar cells near absolute threshold , 1979, Vision Research.

[85]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  Peter Sterling,et al.  Microcircuitry and functional architecture of the cat retina , 1986, Trends in Neurosciences.