Recent advances in microdevices for electrochemical energy conversion and storage

The application of silicon microfabrication technologies to electrochemical devices allows reduction of overall device package to potentially increase volumetric power densities. This review first focuses on some exciting developments in microfuel cells, in particular, solid oxide fuel cells (SOFCs) and proton exchange membrane fuel cells (PEMFCs). The emphasis is given to innovative 2D processing methods, novel 2D architectures of microfuel cells, and demonstrated performance in terms of area power densities. Emerging 3D fabrication techniques that are potentially promising to produce 3D electrochemical devices such as 3D cell and stack architectures on the micrometer scale will then be discussed. Lastly this paper highlights some new opportunities in electrode kinetics studies enabled by microfabricated devices—investigation of scaling relationship between microelectrodes and electrochemical responses, which has led to improved fundamental understanding of electrode reactions and rate‐limiting steps. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[2]  Christopher Hebling,et al.  Micro-Fuel Cells , 2008 .

[3]  Gregory S. Jackson,et al.  Electrochemical Oxidation of H2, CO, and CO ∕ H2 Mixtures on Patterned Ni Anodes on YSZ Electrolytes , 2006 .

[4]  G. Subramaniam Fabrication of Photonic Crystals , 2006, 2006 IEEE Conference on Emerging Technologies - Nanoelectronics.

[5]  F. Prinz,et al.  Thin-Film Solid Oxide Fuel Cells on Porous Nickel Substrates with Multistage Nanohole Array , 2006 .

[6]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[7]  P. Hammond,et al.  Fabrication of a “Soft” Membrane Electrode Assembly Using Layer‐by‐Layer Technology , 2006 .

[8]  Henry I. Smith,et al.  Membrane folding to achieve three-dimensional nanostructures: Nanopatterned silicon nitride folded with stressed chromium hinges , 2006 .

[9]  P. Hammond,et al.  Engineering Ionic and Electronic Conductivity in Polymer Catalytic Electrodes Using the Layer-By-Layer Technique , 2006 .

[10]  Jong-Ho Lee,et al.  Single-chamber solid oxide fuel cell with micropatterned interdigitated electrodes , 2005 .

[11]  Paul J A Kenis,et al.  Air-breathing laminar flow-based microfluidic fuel cell. , 2005, Journal of the American Chemical Society.

[12]  Meilin Liu,et al.  Characteristic Thickness for a Dense La[sub 0.8]Sr[sub 0.2]MnO[sub 3] Electrode , 2005 .

[13]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[14]  Paul J. A. Kenis,et al.  Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media , 2005 .

[15]  Jiujun Zhang,et al.  Design consideration of micro thin film solid-oxide fuel cells , 2005 .

[16]  Vijay Modi,et al.  Micromachined silicon structures for free-convection PEM fuel cells , 2005 .

[17]  Ching-Han Huang,et al.  Electroforming of metallic bipolar plates with micro-featured flow field , 2005 .

[18]  Paul J. A. Kenis,et al.  Characterization of Limiting Factors in Laminar Flow-Based Membraneless Microfuel Cells , 2005 .

[19]  Paul J. A. Kenis,et al.  Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid , 2005 .

[20]  Paula T. Hammond,et al.  Designing a New Generation of Proton‐Exchange Membranes Using Layer‐by‐Layer Deposition of Polyelectrolytes , 2005 .

[21]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[22]  Héctor D. Abruña,et al.  Fabrication and preliminary testing of a planar membraneless microchannel fuel cell , 2005 .

[23]  Paul A. Kohl,et al.  Investigation of acidic methanol solution as a fuel for microchannel fuel cells , 2004 .

[24]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[25]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[26]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[27]  Mark A. Shannon,et al.  Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells , 2004 .

[28]  Klavs F. Jensen,et al.  Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell , 2004 .

[29]  Joshua L. Hertz,et al.  Electrochemical Characterization of Thin Films for a Micro-Solid Oxide Fuel Cell , 2004 .

[30]  Yang Shao-Horn,et al.  Microstructural Features of RF-sputtered SOFC Anode and Electrolyte Materials , 2004 .

[31]  Steven G. Johnson,et al.  A three-dimensional optical photonic crystal with designed point defects , 2004, Nature.

[32]  H. Reichl,et al.  Development of a planar micro fuel cell with thin film and micro patterning technologies , 2004 .

[33]  Fritz B. Prinz,et al.  The Air'Platinum'Nafion Triple-Phase Boundary: Characteristics, Scaling, and Implications for Fuel Cells , 2004 .

[34]  Naijuan Wu,et al.  Thin-film heterostructure solid oxide fuel cells , 2004 .

[35]  Larry J. Markoski,et al.  Microfluidic fuel cell based on laminar flow , 2004 .

[36]  Chaoyang Wang,et al.  Development and characterization of a silicon-based micro direct methanol fuel cell , 2004 .

[37]  Alberto Piqué,et al.  Li-ion microbatteries generated by a laser direct-write method , 2004 .

[38]  V. T. Srikar,et al.  Structural design considerations for micromachined solid oxide fuel cells , 2004 .

[39]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[40]  Liwei Lin,et al.  Electrolyte-based on-demand and disposable microbattery , 2003 .

[41]  P. Krulevitch,et al.  Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry , 2003 .

[42]  Mogens Bjerg Mogensen,et al.  Conversion of Hydrocarbons in Solid Oxide Fuel Cells , 2003 .

[43]  Xiang Zhang,et al.  A micro methanol fuel cell operating at near room temperature , 2003 .

[44]  Jingrong Yu,et al.  Fabrication of miniature silicon wafer fuel cells with improved performance , 2003 .

[45]  P. Cheng,et al.  Fabrication of a miniature twin-fuel-cell on silicon wafer , 2003 .

[46]  Bruce Dunn,et al.  3-D Microbatteries , 2003 .

[47]  George Barbastathis,et al.  Nanostructured origami , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[48]  Jenn-Kun Kuo,et al.  A novel design and microfabrication for a micro PEMFC , 2003 .

[49]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[50]  Suk Won Cha,et al.  Design and fabrication of a micro fuel cell array with “flip-flop” interconnection , 2002 .

[51]  Gregor Hoogers,et al.  Fuel Cell Technology Handbook , 2002 .

[52]  Stephen J. Harris,et al.  Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel , 2002 .

[53]  Jeremy P. Meyers,et al.  Design considerations for miniaturized PEM fuel cells , 2002 .

[54]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[55]  Christopher Hebling,et al.  Fuel Cells for Low Power Applications , 2002 .

[56]  Larry L. Howell,et al.  Microbatteries for self-sustained hybrid micropower supplies , 2002 .

[57]  Alan F. Jankowski,et al.  Micro-Fabricated Thin-Film Fuel Cells for Portable Power Requirements , 2002 .

[58]  P. Hendriksen,et al.  Strategies for testing of solid oxide fuel cells and electrodes , 2002 .

[59]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[60]  A. Wiȩckowski,et al.  Methanol Electrooxidation on Platinum/Ruthenium Nanoparticle Catalysts , 2001 .

[61]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[62]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[63]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[64]  B Warneke,et al.  Smart Dust 立方ミリメートル・コンピュータと通信する , 2001 .

[65]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[66]  Xin Zhang,et al.  A six-wafer combustion system for a silicon micro gas turbine engine , 2000, Journal of Microelectromechanical Systems.

[67]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[68]  L. Gauckler,et al.  Reaction mechanism of Ni pattern anodes for solid oxide fuel cells , 2000 .

[69]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[70]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[71]  Alan F. Jankowski,et al.  Novel proton exchange membrane thin-film fuel cell for microscale energy conversion , 2000 .

[72]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[73]  D. Perednis,et al.  Fabrication of thin electrolytes for second-generation solid oxide fuel cells , 2000 .

[74]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[75]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[76]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[77]  M. S. Rodgers,et al.  Single-step assembly of complex 3-D microstructures , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[78]  Shuqiang Wang,et al.  One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode , 2000 .

[79]  C. Louis,et al.  Catalysis By Gold , 1999 .

[80]  Mogens Bjerg Mogensen,et al.  High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode , 1999 .

[81]  Cheng Sun,et al.  Micro-stereolithography of polymeric and ceramic microstructures , 1999 .

[82]  Seungdoo Park,et al.  Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation , 1999 .

[83]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[84]  Takashi Hibino,et al.  Single Chamber Solid Oxide Fuel Cell Constructed from an Yttria‐Stabilized Zirconia Electrolyte , 1999 .

[85]  Y. Shiraishi,et al.  Colloidal silver catalysts for oxidation of ethylene , 1999 .

[86]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[87]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[88]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[89]  Angelika Heinzel,et al.  Membrane fuel cells : concepts and system design , 1998 .

[90]  B. De Boer,et al.  SOFC Anode : Hydrogen Oxidation at Porous Nickel and Nickel/Yttria-Stabilised Zirconia Cermet Electrodes , 1998 .

[91]  Kristin L. Wood,et al.  Feasibility of micro power supplies for MEMS , 1997 .

[92]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[93]  Mogens Bjerg Mogensen,et al.  Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes , 1997 .

[94]  S. D. Senturia,et al.  Macro Power from Micro Machinery , 1997, Science.

[95]  B. V. Tilak,et al.  Materials for electrochemical capacitors: Theoretical and experimental constraints , 1996 .

[96]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[97]  M. Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[98]  Michael P. Harold,et al.  Micromachined chemical reactors for surface catalyzed oxidation reactions , 1996 .

[99]  Jane M. Shaw,et al.  Micromachining applications of a high resolution ultrathick photoresist , 1995 .

[100]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .

[101]  Nancy J. Dudney,et al.  Rechargeable thin-film lithium batteries , 1994 .

[102]  J. B. Bates,et al.  RECHARGEABLE THIN-FILM LITHIUM MICROBATTERIES , 1993 .

[103]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .