Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions
暂无分享,去创建一个
[1] Robert L. Scot Drysdale,et al. Voronoi diagrams based on convex distance functions , 1985, SCG '85.
[2] Steven Fortune,et al. Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[3] Frank K. Hwang,et al. An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.
[4] Chak-Kuen Wong,et al. Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..
[5] Richard C. T. Lee,et al. Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.
[6] A. Stillings. Modeling Motion , 2005 .
[7] Leonidas J. Guibas,et al. Data structures for mobile data , 1997, SODA '97.
[8] Natan Rubin,et al. On Topological Changes in the Delaunay Triangulation of Moving Points , 2012, SoCG '12.
[9] Micha Sharir,et al. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..
[10] D. T. Lee,et al. Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.
[11] Mariette Yvinec,et al. Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1995, SCG '95.
[12] Rolf Klein,et al. Convex distance functions in 3-space are different , 1993, SCG '93.
[13] Leonidas J. Guibas,et al. Kinetic stable Delaunay graphs , 2010, SCG.
[14] Dan Halperin,et al. CGAL Arrangements and Their Applications - A Step-by-Step Guide , 2012, Geometry and Computing.
[15] Richard C. T. Lee,et al. Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..
[16] Robert L. Scot Drysdale,et al. A practical algorithm for computing the Delaunay triangulation for convex distance functions , 1990, SODA '90.
[17] Leonidas J. Guibas,et al. Stable Delaunay Graphs , 2015, Discret. Comput. Geom..
[18] L. Paul Chew,et al. Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..
[19] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[20] Chak-Kuen Wong,et al. On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..
[21] Micha Sharir,et al. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..
[22] Natan Rubin,et al. On Kinetic Delaunay Triangulations: A Near Quadratic Bound for Unit Speed Motions , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[23] Chee-Keng Yap,et al. A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.
[24] Sven Skyum,et al. A Sweepline Algorithm for Generalized Delaunay Triangulations , 1991 .
[25] Micha Sharir,et al. Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions , 2002, SCG '02.
[26] Lihong Ma,et al. Bisectors and Voronoi Diagrams for Convex Distance Functions , 2000 .
[27] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[28] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.