Dense packings of the Platonic and Archimedean solids
暂无分享,去创建一个
[1] H. Minkowski. Dichteste gitterförmige Lagerung kongruenter Körper , 1904 .
[2] Douglas J. Hoylman. THE DENSEST LATTICE PACKING OF TETRAHEDRA , 1970 .
[3] Jodrey,et al. Computer simulation of close random packing of equal spheres. , 1985, Physical review. A, General physics.
[4] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[5] E. G. Golʹshteĭn,et al. Modified Lagrangians and monotone maps in optimization , 1996 .
[6] S. Torquato,et al. Hard-sphere statistics along the metastable amorphous branch , 1998 .
[7] Ulrich Betke,et al. Densest lattice packings of 3-polytopes , 2000, Comput. Geom..
[8] S. Torquato,et al. Multiplicity of Generation, Selection, and Classification Procedures for Jammed Hard-Particle Packings † , 2001 .
[9] K A Dill,et al. Are proteins well-packed? , 2001, Biophysical journal.
[10] Martin Gardner,et al. The colossal book of mathematics : classic puzzles, paradoxes, and problems : number theory, algebra, geometry, probability, topology, game theory, infinity, and other topics of recreational mathematics , 2001 .
[11] Henry Cohn,et al. New upper bounds on sphere packings I , 2001, math/0110009.
[12] Rob Phillips,et al. Mechanics of DNA packaging in viruses , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[13] F. Stillinger,et al. Concerning maximal packing arrangements of binary disk mixtures , 2004 .
[14] Lori R Hilden,et al. Physics of amorphous solids. , 2004, Journal of pharmaceutical sciences.
[15] T. Hales. The Kepler conjecture , 1998, math/9811078.
[16] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[17] S Torquato,et al. Packing, tiling, and covering with tetrahedra. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[18] Aleksandar Donev,et al. Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] Salvatore Torquato,et al. A Novel Three-Phase Model of Brain Tissue Microstructure , 2008, PLoS Comput. Biol..
[20] Elizabeth R. Chen,et al. A Dense Packing of Regular Tetrahedra , 2008, Discret. Comput. Geom..
[21] F. Stillinger,et al. Optimal packings of superballs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.