Mesh Adaptivity and Optimal Shape Design for Aerospace

Optimal shape design in the presence of shocks requires sophisticated mesh generator with adaptivity. We report here on the use of goal-oriented meshes combined with optimal shape design. The adaptivity uses an adjoint which we can calculate either by discretization of the analytical formulae or by automatic differentiation. We discuss the validity of both approaches and show some results.

[1]  Stefan Ulbrich,et al.  Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 1: Linearized Approximations and Linearized Output Functionals , 2010, SIAM J. Numer. Anal..

[2]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[3]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[5]  Michael B. Giles,et al.  Discrete Adjoint Approximations with Shocks , 2003 .

[6]  Olivier Pironneau,et al.  Applied optimal shape design , 2002 .

[7]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .

[8]  Arieh Iserles,et al.  Acta Numerica 2004 , 2004 .

[9]  Paul-Henry Cournède,et al.  Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .

[10]  B. Stoufflet,et al.  Shape optimization in computational fluid dynamics , 1996 .

[11]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[12]  Frédéric Alauzet,et al.  Continuous and discrete adjoints to the Euler equations for fluids , 2011, ArXiv.

[13]  Stefan Ulbrich,et al.  A Sensitivity and Adjoint Calculus for Discontinuous Solutions of Hyperbolic Conservation Laws with Source Terms , 2002, SIAM J. Control. Optim..

[14]  Luigi Martinelli,et al.  Design Optimization of Propeller Blades , 2005 .

[15]  J. Lions,et al.  THE OPTIMAL CONTROL OF DISTRIBUTED SYSTEMS , 1973 .

[16]  Stefan Ulbrich,et al.  Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..

[17]  S. Ulbrich,et al.  CONVERGENCE OF LINEARISED AND ADJOINT APPROXIMATIONS FOR DISCONTINUOUS SOLUTIONS OF CONSERVATION LAWS . PART 1 : LINEARISED APPROXIMATIONS AND LINEARISED OUTPUT FUNCTIONALS , 2010 .

[18]  A. Jameson,et al.  Design Optimization of High-Lift Configurations Using a Viscous Continuous Adjoint Method , 2002 .

[19]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[20]  O. Pironneau,et al.  A formalism for the differentiation of conservation laws , 2002 .

[21]  Frédéric Alauzet,et al.  High Order Sonic Boom Modeling by Adaptive Methods , 2009 .

[22]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[23]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[24]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[25]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[26]  Luigi Martinelli,et al.  Control-theory based Shape Design for the Incompressible Navier - Stokes Equations , 2003 .

[27]  Arthur Veldman,et al.  NUMERICAL METHODS FOR FLUID DYNAMICS 4 , 1993 .

[28]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[29]  Alain Dervieux,et al.  Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations , 2000 .

[30]  M. Hafez,et al.  Computational fluid dynamics review 1995 , 1995 .

[31]  R. LeVeque Approximate Riemann Solvers , 1992 .