Emerging non-lithium ion batteries

Li-ion batteries have dominated the field of electrochemical energy storage for the last 20 years. It still remains to be one of the most active research fields. However, there are difficult problems still surrounding lithium ion batteries, such as high cost, unsustainable lithium resource and safety issues. Rechargeable batteries base on alternative metal elements (Na, K, Mg, Ca, Zn, Al, etc.) can provide relatively high power density and energy density using abundant, low-cost materials. Therefore, non-lithium ion batteries are regarded as promising candidates to partially replace lithium ion batteries in near future. In recent years, the research on non-lithium rechargeable batteries is progressing rapidly, but many fundamental and technological obstacles remain to be overcome. Here we provide an overview of the current state of non-lithium rechargeable batteries based on monovalent metal ions (Na+ and K+) and multivalent metal ions (Mg2+, Ca2+, Zn2+ and Al3+). The needs and possible choices of superior electrode materials and compatible electrolytes beneficial for ion transport were emphatically discussed in this review.

[1]  M. Miyayama,et al.  Characterization of magnesium-intercalated V2O5/carbon composites , 2003 .

[2]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[3]  Petr Novák,et al.  Magnesium Insertion Electrodes for Rechargeable Nonaqueous Batteries — A Competitive Alternative to Lithium? , 1999 .

[4]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[5]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[6]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[7]  정경윤,et al.  Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries , 2015 .

[8]  Min‐Sik Park,et al.  Recent Advances in Rechargeable Magnesium Battery Technology: A Review of the Field’s Current Status and Prospects , 2015 .

[9]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[10]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[11]  Arumugam Manthiram,et al.  High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries , 2015 .

[12]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[13]  Anubhav Jain,et al.  Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures , 2015 .

[14]  Yuesheng Wang,et al.  Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries , 2015, Nature Communications.

[15]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[16]  Wei Wang,et al.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation , 2013, Scientific Reports.

[17]  Xueping Gao,et al.  Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries , 2015 .

[18]  Lei Liu,et al.  NaTiO2: a layered anode material for sodium-ion batteries , 2015 .

[19]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[20]  Zhouguang Lu,et al.  The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries , 2014 .

[21]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[22]  A. Byström,et al.  Crystal Structure of Hollandite , 1949, Nature.

[23]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[24]  Quan-hong Yang,et al.  Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries , 2016 .

[25]  P. Balaya,et al.  α-MoO3: A high performance anode material for sodium-ion batteries , 2013 .

[26]  K. Sau,et al.  Role of Ion–Ion Correlations on Fast Ion Transport: Molecular Dynamics Simulation of Na2Ni2TeO6 , 2015 .

[27]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[28]  Jun Chen,et al.  Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications. , 2006, Angewandte Chemie.

[29]  Yi Cui,et al.  Full open-framework batteries for stationary energy storage , 2014, Nature Communications.

[30]  P. Hagenmuller,et al.  Electronic and electrochemical properties of NaxCoO2−y cathode , 1983 .

[31]  Abdolreza Mirmohseni,et al.  Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode , 2003 .

[32]  M. Shamsipur,et al.  Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery , 2007 .

[33]  Zhiqian Wang,et al.  Flexible zinc–carbon batteries with multiwalled carbon nanotube/conductive polymer cathode matrix , 2013 .

[34]  B. Grgur,et al.  Novel electrolyte for zinc-polyaniline batteries , 2006 .

[35]  M. Matsui Study on electrochemically deposited Mg metal , 2010 .

[36]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[37]  Marc D. Walter,et al.  Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. , 2015, Nanoscale.

[38]  Matthew M. Huie,et al.  Cathode materials for magnesium and magnesium-ion based batteries , 2015 .

[39]  P. He,et al.  The development of a new type of rechargeable batteries based on hybrid electrolytes. , 2010, ChemSusChem.

[40]  Y. Sakurai,et al.  Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts , 2003 .

[41]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[42]  M. S. Rao,et al.  Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery , 2013 .

[43]  Yongil Kim,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[44]  Jun Chen,et al.  Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries , 2015 .

[45]  F. Fauth,et al.  Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction , 2015 .

[46]  Hongda Du,et al.  Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage , 2009 .

[47]  C. Grey,et al.  Ordered and Disordered Polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-Ordered Cathodes for Na-Ion Batteries , 2015 .

[48]  Seung M. Oh,et al.  High-capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[49]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[50]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[51]  Yang Liu,et al.  Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes , 2015 .

[52]  Xin Cai,et al.  Flexible fiber-type zinc–carbon battery based on carbon fiber electrodes , 2013 .

[53]  A. Manivannan,et al.  Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future , 2014 .

[54]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[55]  Atsuo Yamada,et al.  Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries , 2014 .

[56]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[57]  R. Tenne Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. , 2003, Angewandte Chemie.

[58]  William A. Goddard,et al.  Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries , 2015 .

[59]  Chunsheng Wang,et al.  An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. , 2015, Small.

[60]  M. Verdaguer,et al.  A room-temperature organometallic magnet based on Prussian blue , 1995, Nature.

[61]  Yuki Yamada,et al.  Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries , 2013 .

[62]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[63]  Ning Zhang,et al.  Ultrasmall Sn Nanoparticles Embedded in Carbon as High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[64]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[65]  D. Bish,et al.  Rietveld refinement of the todorokite structure , 1988 .

[66]  Li Lu,et al.  Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries , 2010 .

[67]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[68]  Xinping Ai,et al.  Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. , 2014, Nano letters.

[69]  Chun-hua Chen,et al.  Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries , 2014 .

[70]  Tao Gao,et al.  Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. , 2015, ACS nano.

[71]  N. Hudak Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries , 2014 .

[72]  Yong‐Sheng Hu,et al.  Anti-P2 structured Na0.5NbO2 and its negative strain effect , 2015 .

[73]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[74]  Yi Cui,et al.  Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries , 2014, Nature Communications.

[75]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[76]  Boeun Lee,et al.  Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. , 2015, Chemical Communications.

[77]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[78]  S. Dou,et al.  A new, cheap, and productive FeP anode material for sodium-ion batteries. , 2015, Chemical communications.

[79]  S. Dou,et al.  Reduced graphene oxide with superior cycling stability and rate capability for sodium storage , 2013 .

[80]  B. Cho,et al.  Todorokite-type MnO2 as a zinc-ion intercalating material , 2013 .

[81]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[82]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[83]  Lifang Jiao,et al.  Mg intercalation properties into open-ended vanadium oxide nanotubes , 2005 .

[84]  Jun Chen,et al.  MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. , 2014, Angewandte Chemie.

[85]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[86]  Lifang Jiao,et al.  Synthesis of Cu0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries , 2006 .

[87]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[88]  M. Robin The Color and Electronic Configurations of Prussian Blue , 1962 .

[89]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[90]  Y. L. Zhou,et al.  Comparison of tetragonal and cubic tin as anode for Mg ion batteries. , 2014, ACS applied materials & interfaces.

[91]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[92]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation , 2004 .

[93]  Kyung Yoon Chung,et al.  NaCrO2 cathode for high-rate sodium-ion batteries , 2015 .

[94]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[95]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[96]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[97]  P. Novák,et al.  Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes , 1993 .

[98]  Tao Zhang,et al.  The water catalysis at oxygen cathodes of lithium–oxygen cells , 2015, Nature Communications.

[99]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[100]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[101]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[102]  Yutao Li,et al.  A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. , 2015, Chemical Society reviews.

[103]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[104]  I. Parkin,et al.  Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces , 2006 .

[105]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[106]  Timothy S. Arthur,et al.  Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries , 2012 .

[107]  D. Aurbach,et al.  Solid‐State Rechargeable Magnesium Batteries , 2003 .

[108]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[109]  Xinping Ai,et al.  Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High‐Rate and Extended Lifespan Cathode for Sodium‐Ion Batteries , 2015, Advanced materials.

[110]  Yan‐Bing He,et al.  Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions , 2015 .

[111]  Yang Xia,et al.  Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance , 2015 .

[112]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[113]  E. Menke,et al.  The Roles of V2O5 and Stainless Steel in Rechargeable Al–Ion Batteries , 2013 .

[114]  Yong-Sheng Hu,et al.  Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries , 2016 .

[115]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation. , 2004 .

[116]  Xiulin Fan,et al.  Superior Stable Self‐Healing SnP3 Anode for Sodium‐Ion Batteries , 2015 .

[117]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[118]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[119]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[120]  Kristin A. Persson,et al.  First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. , 2015, Chemical communications.

[121]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[122]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[123]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[124]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[125]  D. Aurbach,et al.  Structural Mechanism of the Phase Transitions in the Mg−Cu−Mo6S8 System Probed by ex Situ Synchrotron X-ray Diffraction , 2007 .

[126]  A. Yamada,et al.  Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: a supersuperexchange-driven non-collinear antiferromagnet. , 2013, Inorganic chemistry.

[127]  Xu Xu,et al.  Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes , 2015 .

[128]  G. Amatucci,et al.  Investigation of Yttrium and Polyvalent Ion Intercalation into Nanocrystalline Vanadium Oxide , 2001 .

[129]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[130]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[131]  R. Solanki,et al.  Prussian Green: A High Rate Capacity Cathode for Potassium Ion Batteries , 2015 .

[132]  Kunfeng Chen,et al.  Structural design of graphene for use in electrochemical energy storage devices. , 2015, Chemical Society reviews.

[133]  Xiaogang Zhang,et al.  A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte , 2003 .

[134]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[135]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[136]  Yong‐Sheng Hu,et al.  Fe‐Based Tunnel‐Type Na0.61[Mn0.27Fe0.34Ti0.39]O2 Designed by a New Strategy as a Cathode Material for Sodium‐Ion Batteries , 2015 .

[137]  Ya‐Xia Yin,et al.  A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries , 2014 .

[138]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[139]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[140]  H. Iba,et al.  Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries , 2013 .

[141]  S. B. Park,et al.  Hierarchical MoSe₂ yolk-shell microspheres with superior Na-ion storage properties. , 2014, Nanoscale.

[142]  Shengbo Zhang The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries , 2015 .

[143]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[144]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[145]  Vivek B Shenoy,et al.  Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. , 2014, ACS applied materials & interfaces.

[146]  Guiling Wang,et al.  Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery , 2014 .

[147]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[148]  Jun Chen,et al.  Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells , 2009 .

[149]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[150]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[151]  Xueping Gao,et al.  Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .

[152]  Jerrnpy E. Posr,et al.  Crystal structure determinations of synthetic sodium , magnesium , and potassium birnessite using TEM and the Rietveld method , 2007 .

[153]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[154]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[155]  Fuminori Mizuno,et al.  A high energy-density tin anode for rechargeable magnesium-ion batteries. , 2013, Chemical communications.

[156]  Yuyan Shao,et al.  Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. , 2014, Nano letters.

[157]  Xiuling Gao,et al.  Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes , 2006 .

[158]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[159]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[160]  Li Zhang,et al.  Preliminary study of single flow zinc-nickel battery , 2007 .

[161]  Feiyu Kang,et al.  Preparation and Characterization of MnO2/acid-treated CNT Nanocomposites for Energy Storage with Zinc Ions , 2014 .

[162]  Kepeng Song,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[163]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[164]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[165]  D. Aurbach,et al.  The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes , 1991 .

[166]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[167]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[168]  W. Chu,et al.  Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries , 2015 .

[169]  C. Chen,et al.  Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries , 2015 .

[170]  D. Aurbach,et al.  Crystallography of Chevrel phases, MMo6T8 (M = Cd, Na, Mn, and Zn, T = S, Se) and their cation mobility. , 2009, Inorganic chemistry.

[171]  Jun Chen,et al.  3D Porous γ‐Fe2O3@C Nanocomposite as High‐Performance Anode Material of Na‐Ion Batteries , 2015 .

[172]  J. Tarascon,et al.  Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2·4H2O , 2014 .

[173]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[174]  Jun Lu,et al.  Binder-free V2O5 cathode for greener rechargeable aluminum battery. , 2015, ACS applied materials & interfaces.

[175]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[176]  C. Cardoso,et al.  On the electronic structure of the semiconducting compounds Mg3Bi2 and Mg3Sb2 , 1984 .

[177]  F. Scholz,et al.  The Formal Potentials of Solid Metal Hexacyanometalates , 1996 .

[178]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[179]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[180]  Liquan Chen,et al.  Micro-MoS2 with excellent reversible sodium-ion storage. , 2015, Chemistry.

[181]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[182]  D. Aurbach,et al.  Chevrel Phases, MxMo6T8 (M = Metals, T = S, Se, Te) as a Structural Chameleon: Changes in the Rhombohedral Framework and Triclinic Distortion , 2010 .

[183]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[184]  H. Kraut,et al.  Ernährung und Leistungsfähigkeit , 1941 .

[185]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[186]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[187]  Lin Gu,et al.  Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries , 2015 .

[188]  A. U.S.,et al.  Rietveld refinement of the todorokite structure , 2007 .

[189]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[190]  Yang Xu,et al.  Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. , 2015, Angewandte Chemie.

[191]  Arumugam Manthiram,et al.  Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge , 2015, Nature Communications.

[192]  Zhijun Jia,et al.  Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries , 2015 .

[193]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[194]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[195]  Yuki Yamada,et al.  Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents , 2013 .

[196]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[197]  T. Matsue,et al.  Electrochemical Studies of Spinel LiMn_2O_4 Films Prepared by Electrostatic Spray Deposition , 1998 .

[198]  Marc D. Walter,et al.  Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. , 2014, Nano letters.

[199]  W. Chu,et al.  Retracted Article: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries , 2014 .

[200]  M. Elcombe,et al.  A powder neutron diffraction study of λ and γ manganese dioxide and of LiMn2O4 , 1994 .

[201]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[202]  J. Galy,et al.  A refinement of the structure of V2O5 , 1986 .

[203]  F. Kang,et al.  Secondary batteries with multivalent ions for energy storage , 2015, Scientific Reports.

[204]  Xiongwei Wu,et al.  An aqueous rechargeable battery based on zinc anode and Na(0.95)MnO2. , 2014, Chemical communications.

[205]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[206]  Y. Chiang,et al.  Reversible Aluminum‐Ion Intercalation in Prussian Blue Analogs and Demonstration of a High‐Power Aluminum‐Ion Asymmetric Capacitor , 2015 .

[207]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[208]  Kai Zhang,et al.  FeSe2 Microspheres as a High‐Performance Anode Material for Na‐Ion Batteries , 2015, Advanced materials.

[209]  Jun Chen,et al.  TiS2 nanotubes as the cathode materials of Mg-ion batteries. , 2004, Chemical communications.

[210]  Yan Yu,et al.  Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. , 2014, Nanoscale.

[211]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[212]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[213]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[214]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[215]  T. Mallouk,et al.  Reversible intercalation of graphite by fluorine: a new bifluoride, C12HF2, and graphite fluorides, CxF (5 > x > 2) , 1983 .

[216]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[217]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[218]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[219]  R. Solanki,et al.  Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries , 2015 .

[220]  Chunsheng Wang,et al.  An Advanced MoS 2 / Carbon Anode for High-Performance Sodium-Ion Batteries , 2014 .

[221]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[222]  R. Bell,et al.  Preparation and Characterization of a New Crystalline Form of Molybdenum Disulfide , 1957 .

[223]  Xiangxin Guo,et al.  Transition‐Metal‐Free Magnesium‐Based Batteries Activated by Anionic Insertion into Fluorinated Graphene Nanosheets , 2015 .

[224]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.