Word Bell Polynomials

Partial multivariate Bell polynomials have been de ned by E.T. Bell in 1934. These polynomials have numerous applications in Combinatorics, Analysis, Algebra, Probabilities etc. Many of the formulæ on Bell polynomials involve combinatorial objects (set partitions, set partitions into lists, permutations etc). So it seems natural to investigate analogous formulæ in some combinatorial Hopf algebras with bases indexed by these objects. In this paper we investigate the connexions between Bell polynomials and several combinatorial Hopf algebras: the Hopf algebra of symmetric functions, the Faà di Bruno algebra, the Hopf algebra of word symmetric functions etc. We show that Bell polynomials can be de ned in all these algebras and we give analogues of classical results. To this aim, we construct and study a family of combinatorial Hopf algebras whose bases are indexed by colored set partitions.

[1]  Saad Zagloul Rida,et al.  Noncommutative Bell polynomials , 1996, Int. J. Algebra Comput..

[2]  L. Schoenfeld,et al.  The number of idempotent elements in symmetric semigroups , 1967 .

[3]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .

[4]  Richard G. Larson,et al.  Hopf-algebraic structure of families of trees , 1989 .

[5]  A. Lascoux Symmetric Functions and Combinatorial Operators on Polynomials , 2003 .

[6]  J. Thibon,et al.  Construction de trigèbres dendriformes , 2006 .

[7]  Partial Bell Polynomials and Inverse Relations , 2010 .

[8]  Peter Doubilet A Hopf algebra arising from the lattice of partitions of a set , 1974 .

[9]  Sadek Bouroubi,et al.  New Identities for Bell's Polynomials New Approaches , 2006 .

[10]  Djurdje Cvijovic New identities for the partial Bell polynomials , 2011, Appl. Math. Lett..

[11]  Word symmetric functions and the Redfield-P\'olya , 2013 .

[12]  Ernesto Pascal Sullo sviluppo delle funzioni σ abeliane dispari di genere 3 , 1889 .

[13]  Margarete C. Wolf,et al.  Symmetric functions of non-commutative elements , 1936 .

[14]  Mike Zabrocki,et al.  Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables , 2008, Canadian Journal of Mathematics.

[15]  Kurusch Ebrahimi-Fard,et al.  Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras , 2014, Int. J. Algebra Comput..

[16]  Y. Cherruault,et al.  New results for the Adomian method , 2000 .

[17]  M. Tainiter Generating Functions on idempotent semigroups with application to combinatorial analysis , 1968 .

[18]  F. Hivert,et al.  Commutative combinatorial Hopf algebras , 2006 .

[19]  S. Disney,et al.  On the Lambert W function: EOQ applications and pedagogical considerations , 2010 .

[20]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[21]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[22]  Loic Foissy,et al.  Bidendriform bialgebras, trees, and free quasi-symmetric functions , 2005, math/0505207.

[23]  Jean-Yves Thibon,et al.  Hopf algebras and dendriform structures arising from parking functions , 2005 .

[24]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[25]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[26]  Miloud Mihoubi Bell polynomials and binomial type sequences , 2008, Discret. Math..

[27]  J. Riordan Derivatives of composite functions , 1946 .

[28]  Tianming Wang,et al.  General identities on Bell polynomials , 2009, Comput. Math. Appl..

[29]  J. Loday,et al.  CUP-Product for Leibnitz Cohomology and Dual Leibniz Algebras. , 1995 .

[30]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[31]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[32]  J. Luque,et al.  Word symmetric functions and the Redfield-Pólya theorem , 2013, 1302.5815.

[33]  Sadek Bouroubi,et al.  On new identities for Bell's polynomials , 2005, Discret. Math..