IIR Digital Filter Design Using Convex Optimization

IV ACKNOWLEDGEMENTS VII LIST OF TABLES XII LIST OF FIGURES XIV LIST OF ABBREVIATIONS XVII CHAPTER

[1]  Klaus Preuss,et al.  On the design of FIR filters by complex Chebyshev approximation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[2]  H. Hindi,et al.  A tutorial on convex optimization , 2004, Proceedings of the 2004 American Control Conference.

[3]  Guido M. Cortelazzo,et al.  Simultaneous design in both magnitude and group-delay of IIR and FIR filters based on multiple criterion optimization , 1984 .

[4]  Wu-Sheng Lu Design of nonlinear-phase FIR digital filters: a semidefinite programming approach , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[5]  Andreas Antoniou,et al.  Practical Optimization: Algorithms and Engineering Applications , 2007, Texts in Computer Science.

[6]  Rolf Unbehauen,et al.  Weighted least-squares approximation of FIR by IIR digital filters , 2001, IEEE Trans. Signal Process..

[7]  Shing-Chow Chan,et al.  Design of Constrained Causal Stable IIR Filters Using a New Second- Order-Cone-Programming-Based Model-Reduction Technique , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Pan Agathoklis,et al.  The use of model reduction techniques for designing IIR filters with linear phase in the passband , 1996, IEEE Trans. Signal Process..

[9]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[10]  L. Rabiner,et al.  Linear programming design of IIR digital filters with arbitrary magnitude function , 1974 .

[11]  G.D. Cain,et al.  Approximation of FIR by IIR digital filters: an algorithm based on balanced model reduction , 1992, IEEE Trans. Signal Process..

[12]  R. Lynn Kirlin,et al.  Least pth optimization for the design of 1-D filters with arbitrary amplitude and phase responses , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .

[14]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[15]  C. Tseng,et al.  Minimax design of stable IIR digital filter with prescribed magnitude and phase responses , 2002 .

[16]  W.-S. Lu Design of stable IIR digital filters with equiripple passbands and peak-constrained least squares stopbands , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[17]  Wei Yu,et al.  An introduction to convex optimization for communications and signal processing , 2006, IEEE Journal on Selected Areas in Communications.

[18]  Andrzej Tarczynski,et al.  A WISE method for designing IIR filters , 2001, IEEE Trans. Signal Process..

[19]  T. Broadbent Complex Variables , 1970, Nature.

[20]  Takao Hinamoto,et al.  Optimal design of IIR digital filters with robust stability using conic-quadratic-programming updates , 2003, IEEE Trans. Signal Process..

[21]  Rolf Unbehauen,et al.  Least-squares approximation of FIR by IIR digital filters , 1998, IEEE Trans. Signal Process..

[22]  YuWei,et al.  An introduction to convex optimization for communications and signal processing , 2006 .

[23]  Panajotis Agathoklis,et al.  Design of linear phase IIR filters via weighted least-squares approximation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[24]  Hon Keung Kwan,et al.  IIR Digital Filter Design with Novel Stability Criterion Based on Argument Principle , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[25]  Thomas W. Parks,et al.  Design of IIR filters in the complex domain , 1990, IEEE Trans. Acoust. Speech Signal Process..

[26]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[27]  Hon Keung Kwan,et al.  Unconstrained IIR filter design method using argument principle based stability criterion , 2008, APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems.

[28]  Shing-Chow Chan,et al.  On the design of real and complex FIR filters with flatness and peak error constraints using semidefinite programming , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[29]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[30]  Chien-Cheng Tseng Design of IIR digital all-pass filters using least pth phase error criterion , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[31]  Ashraf Alkhairy An efficient method for IIR filter design , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Chien-Cheng Tseng,et al.  Design of stable IIR digital filter based on least P-power error criterion , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[33]  A. Nemirovski,et al.  Interior-point methods for optimization , 2008, Acta Numerica.

[34]  C. Sidney Burrus,et al.  On the design of L/sub p/ IIR filters with arbitrary frequency response , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[35]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[36]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[37]  Wu-Sheng Lu A unified approach for the design of 2-D digital filters via semidefinite programming , 2002 .

[38]  K. S. Yeung,et al.  Design of FIR digital filters with prescribed flatness and peak error constraints using second-order cone programming , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[39]  Wu-Sheng Lu Design of stable IIR digital filters with equiripple passbands and peak-constrained least-squares stopbands , 1999 .

[40]  Shing-Chow Chan,et al.  The design of digital all-pass filters using second-order cone programming (SOCP) , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[41]  J. O. Coleman,et al.  Design of nonlinear-phase FIR filters with second-order cone programming , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[42]  Bogdan Dumitrescu,et al.  Simplified procedures for quasi-equiripple IIR filter design , 2004, IEEE Signal Processing Letters.

[43]  Stephen P. Boyd,et al.  Rank minimization and applications in system theory , 2004, Proceedings of the 2004 American Control Conference.

[44]  Stephen P. Boyd,et al.  FIR filter design via semidefinite programming and spectral factorization , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[45]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[46]  Arnab K. Shaw Optimal design of digital IIR filters by model-fitting frequency response data , 1993, ISCAS.

[47]  Truong Q. Nguyen,et al.  New linear-programming-based filter design , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[48]  Andreas Antoniou,et al.  Digital Filters: Analysis, Design and Applications , 1979 .

[49]  Wu-Sheng Lu An argument-principle based stability criterion and application to the design of IIR digital filters , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[50]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[51]  H. Kwan,et al.  Recent Advances in FIR Approximation by IIR Digital Filters , 2006, International Conference on Communications, Circuits and Systems.

[52]  T. Yoshikawa,et al.  Complex Chebyshev approximation for IIR digital filters based on eigenvalue problem , 2000 .

[53]  Mathias C. Lang,et al.  Least-squares design of IIR filters with prescribed magnitude and phase responses and a pole radius constraint , 2000, IEEE Trans. Signal Process..

[54]  Wei-Yong Yan,et al.  Design of low-order linear-phase IIR filters via orthogonal projection , 1999, IEEE Trans. Signal Process..

[55]  Ngai Wong,et al.  IIR Approximation of FIR Filters Via Discrete-Time Vector Fitting , 2008, IEEE Transactions on Signal Processing.

[56]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[57]  Arnab K. Shaw Optimal identification of discrete-time systems from impulse response data , 1994, IEEE Trans. Signal Process..

[58]  A. Deczky Equiripple and minimax (Chebyshev) approximations for recursive digital filters , 1974 .

[59]  R. Fletcher Practical Methods of Optimization , 1988 .

[60]  Thomas W. Parks,et al.  Design of FIR filters in the complex domain , 1987, IEEE Trans. Acoust. Speech Signal Process..

[61]  A. Deczky Synthesis of recursive digital filters using the minimum p-error criterion , 1972 .

[62]  Yong Ching Lim,et al.  A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design , 1992, IEEE Trans. Signal Process..

[63]  Bogdan Dumitrescu,et al.  Multistage IIR filter design using convex stability domains defined by positive realness , 2004, IEEE Transactions on Signal Processing.

[64]  H. Hindi A tutorial on convex optimization II: duality and interior point methods , 2006, 2006 American Control Conference.

[65]  Chien-Cheng Tseng,et al.  A weighted least-squares method for the design of stable 1-D and 2-D IIR digital filters , 1998, IEEE Trans. Signal Process..

[66]  Wu-Sheng Lu,et al.  Design of stable minimax IIR digital filters using semidefinite programming , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[67]  Masaaki Ikehara,et al.  Design of IIR digital filters using all-pass networks , 1994 .