Unconstrained receding horizon control with no terminal cost

In this paper, we discuss a stabilizing receding horizon scheme for unconstrained nonlinear systems. Using Dini's theorem on the uniform convergence of functions, we show that there always exist a finite horizon length for which the corresponding receding horizon scheme is stabilizing without using terminal costs and/or constraints.

[1]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[2]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[3]  A. Schaft On a state space approach to nonlinear H ∞ control , 1991 .

[4]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[5]  C. Abdallah,et al.  Linear Quadratic Control: an introduction - Solutions manual , 1995 .

[6]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[7]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[8]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[10]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[11]  F. Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997 .

[12]  G. Nicolao,et al.  Stabilizing receding-horizon control of nonlinear time-varying systems , 1998, IEEE Trans. Autom. Control..

[13]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[14]  John R. Hauser,et al.  Receding horizon control of the Caltech ducted fan: a control Lyapunov function approach , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[15]  John R. Hauser,et al.  Relaxing the optimality condition in receding horizon control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[16]  John Doyle,et al.  A receding horizon generalization of pointwise min-norm controllers , 2000, IEEE Trans. Autom. Control..

[17]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[18]  James A. Primbs,et al.  Feasibility and stability of constrained finite receding horizon control , 2000, Autom..

[19]  Chaouki T. Abdallah,et al.  Linear Quadratic Control: An Introduction , 2000 .

[20]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..