A bright future for colloidal quantum dot lasers

Given the current needs for lasers on flexible substrates or as disposable, low-cost appliances, solution-processable lasers based on tunable colloidal quantum dots (QD) could revolutionize the field of laser-based opto-electronics, much as these QD materials currently do for the growing markets of displays and lighting. In this perspective, we present the status of this rapidly advancing field, followed by a discussion of the remaining challenges and possible avenues for future research and valorization.

[1]  Ping Zhang,et al.  Flexible integrated photonics: where materials, mechanics and optics meet [Invited] , 2013 .

[2]  Cherie R. Kagan,et al.  Prospects of nanoscience with nanocrystals. , 2015, ACS nano.

[3]  Hilmi Volkan Demir,et al.  Giant Modal Gain Coefficients in Colloidal II-VI Nanoplatelets. , 2018, Nano letters.

[4]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[5]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[6]  D. van Thourhout,et al.  Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. , 2018, Nature materials.

[7]  Z. Hens,et al.  On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals , 2017 .

[8]  Oliver T. Bruns,et al.  Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared , 2016, Nature Communications.

[9]  Zeger Hens,et al.  The Impact of Core/Shell Sizes on the Optical Gain Characteristics of CdSe/CdS Quantum Dots. , 2018, ACS nano.

[10]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[11]  L. D. Negro,et al.  Applicability conditions and experimental analysis of the variable stripe length method for gain measurements , 2004 .

[12]  R. Baets,et al.  Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits , 2017, Journal of Lightwave Technology.

[13]  Holger Schmidt,et al.  Optofluidic bioanalysis: fundamentals and applications , 2017, Nanophotonics.

[14]  Kaifeng Wu,et al.  Towards zero-threshold optical gain using charged semiconductor quantum dots. , 2017, Nature nanotechnology.

[15]  T. Aubert,et al.  Colloidal Quantum Dots Enabling Coherent Light Sources for Integrated Silicon-Nitride Photonics , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[17]  O. Voznyy,et al.  Microsecond-sustained lasing from colloidal quantum dot solids , 2015, Nature Communications.

[18]  Timothy C. Berkelbach,et al.  Excitons in atomically thin transition-metal dichalcogenides , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[19]  Jaehoon Lim,et al.  Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. , 2018, Nature materials.

[20]  L. Vivien,et al.  Optical gain in carbon nanotubes , 2010, 1011.6088.

[21]  J. Hodgkiss,et al.  Using Bulk-like Nanocrystals To Probe Intrinsic Optical Gain Characteristics of Inorganic Lead Halide Perovskites. , 2018, ACS nano.

[22]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[23]  Roberto Cingolani,et al.  Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. , 2014, Nature nanotechnology.

[24]  Markus Karl,et al.  Flexible and ultra-lightweight polymer membrane lasers , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[25]  T. Aubert,et al.  On‐Chip Integrated Quantum‐Dot–Silicon‐Nitride Microdisk Lasers , 2017, Advanced materials.

[26]  R. P. Drake,et al.  Laboratory analogue of a supersonic accretion column in a binary star system , 2016, Nature Communications.

[27]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[28]  Victor I Klimov,et al.  Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces. , 2015, Nano letters.

[29]  Edo Waks,et al.  A room temperature continuous-wave nanolaser using colloidal quantum wells , 2017, Nature Communications.

[30]  Matthew Pelton,et al.  Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum Wells , 2018 .

[31]  Rupert F. Oulton,et al.  Applications of nanolasers , 2018, Nature Nanotechnology.

[32]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[33]  R. Quintero‐Bermudez,et al.  Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy , 2017, Nature.

[34]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[35]  F. García-Santamaría,et al.  Suppressed auger recombination in "giant" nanocrystals boosts optical gain performance. , 2009, Nano letters.

[36]  D. van Thourhout,et al.  Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells , 2019, The Journal of Physical Chemistry C.

[37]  A. Nurmikko What future for quantum dot-based light emitters? , 2015, Nature nanotechnology.