Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations

In this paper, we present a preconditioned variant of the generalized successive overrelaxation (GSOR) iterative method for solving a broad class of complex symmetric linear systems. We study conditions under which the spectral radius of the iteration matrix of the preconditioned GSOR method is smaller than that of the GSOR method and determine the optimal values of iteration parameters. Numerical experiments are given to verify the validity of the presented theoretical results and the effectiveness of the preconditioned GSOR method. Copyright c © 2000 John Wiley & Sons, Ltd.

[1]  D. K. Salkuyeh,et al.  Generalized SOR iterative method for a class of complex symmetric linear system of equations , 2014, 1403.5902.

[2]  Xu Li,et al.  Lopsided PMHSS iteration method for a class of complex symmetric linear systems , 2013, Numerical Algorithms.

[3]  S. Arridge Optical tomography in medical imaging , 1999 .

[4]  Owe Axelsson,et al.  A comparison of iterative methods to solve complex valued linear algebraic systems , 2014, Numerical Algorithms.

[5]  Benjamin Graille,et al.  Projected Iterative Algorithms for Complex Symmetric Systems Arising in Magnetized Multicomponent Transport , 2009 .

[6]  Stephen A. Vavasis,et al.  An Iterative Method for Solving Complex-Symmetric Systems Arising in Electrical Power Modeling , 2005, SIAM J. Matrix Anal. Appl..

[7]  Davod Khojasteh Salkuyeh,et al.  Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations , 2015, Int. J. Comput. Math..

[8]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[9]  M. Benzi,et al.  Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems , 2013 .

[10]  F. M. Toyama,et al.  Accurate numerical solutions of the time-dependent Schrödinger equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  V. Simoncini,et al.  Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .

[12]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[13]  Fang Chen,et al.  On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.

[14]  O. Axelsson Iterative solution methods , 1995 .

[15]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[18]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[19]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[20]  Bill Poirier,et al.  Efficient preconditioning scheme for block partitioned matrices with structured sparsity , 2000, Numer. Linear Algebra Appl..

[21]  M. Benzi,et al.  Block preconditioning of real-valued iterative algorithms for complex linear systems , 2007 .

[22]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[23]  Dario Fasino,et al.  An inverse Robin problem for Laplace's equation: theoretical results and numerical methods , 1999 .

[24]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..