Efficiently Processing Queries on Interval-and-Value Tuples in Relational Databases

With the increasing occurrence of temporal and spatial data in present-day database applications, the interval data type is adopted by more and more database systems. For an efficient support of queries that contain selections on interval attributes as well as simple-valued attributes (e.g. numbers, strings) at the same time, special index structures are required supporting both types of predicates in combination. Based on the Relational Interval Tree, we present various indexing schemes that support such combined queries and can be integrated in relational database systems with minimum effort. Experiments on different query types show superior performance for the new techniques in comparison to competing access methods.

[1]  Richard T. Snodgrass,et al.  A taxonomy of time databases , 1985, SIGMOD Conference.

[2]  Sridhar Ramaswamy,et al.  Indexing for data models with constraints and classes (extended abstract) , 1993, PODS '93.

[3]  Peter J. H. King,et al.  Querying multi-dimensional data indexed using the Hilbert space-filling curve , 2001, SGMD.

[4]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[5]  Christos Faloutsos,et al.  Fractals for secondary key retrieval , 1989, PODS.

[6]  Peter J. H. King,et al.  Using Space-Filling Curves for Multi-dimensional Indexing , 2000, BNCOD.

[7]  Hans-Peter Kriegel,et al.  Object-Relational Indexing for General Interval Relationships , 2001, SSTD.

[8]  Thomas Seidl,et al.  Joining interval data in relational databases , 2004, SIGMOD '04.

[9]  Vassilis J. Tsotras,et al.  Comparison of access methods for time-evolving data , 1999, CSUR.

[10]  Christian S. Jensen,et al.  On the Semantics of , 1996 .

[11]  Sridhar Ramaswamy Efficient Indexing for Constraint and Temporal Databases , 1997, ICDT.

[12]  Ramez Elmasri,et al.  The Time Index: An Access Structure for Temporal Data , 1990, VLDB.

[13]  Christian S. Jensen,et al.  On the semantics of “now” in databases , 1996, TODS.

[14]  Hans-Peter Kriegel,et al.  Object-Relational Spatial Indexing , 2005, Spatial Databases.

[15]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[16]  Ralf Hartmut Güting,et al.  External segment trees , 1994, Algorithmica.

[17]  Arie Segev,et al.  Efficient Indexing Methods for Temporal Relations , 1993, IEEE Trans. Knowl. Data Eng..

[18]  Christian Böhm,et al.  XZ-Ordering: A Space-Filling Curve for Objects with Spatial Extension , 1999, SSD.

[19]  Thomas Seidl,et al.  Integrating the Relational Interval Tree into IBM's DB2 Universal Database Server , 2005, BTW.

[20]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[21]  Michael Stonebraker,et al.  Segment indexes: dynamic indexing techniques for multi-dimensional interval data , 1991, SIGMOD '91.

[22]  Christos Faloutsos,et al.  DOT: A Spatial Access Method Using Fractals , 1991, ICDE.

[23]  Beng Chin Ooi,et al.  Indexing Temporal Data Using Existing B+-Trees , 1996, Data Knowl. Eng..

[24]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[25]  H. V. Jagadish,et al.  Linear clustering of objects with multiple attributes , 1990, SIGMOD '90.

[26]  Hans-Peter Kriegel,et al.  Interval Sequences: An Object-Relational Approach to Manage Spatial Data , 2001, SSTD.

[27]  Hans-Peter Kriegel,et al.  Managing Intervals Efficiently in Object-Relational Databases , 2000, VLDB.

[28]  Sridhar Ramaswamy,et al.  Indexing for Data Models with Constraints and Classes , 1996, J. Comput. Syst. Sci..